Why is total dipole printed in general output file different from that printed in designated .Dipole file?

Eero Holmström eero.ho... at gmail.com
Mon Apr 4 16:44:00 CEST 2016


Hello,

I'm using CP2K to compute the total dipole of my supercell within a DFT 
calculation using the Berry phase method. The results seem reasonable all 
in all, but I would like to understand why the dipole printed in the 
regular output stream (as follows):

   Dipole moment [Debye]
   X=    0.00374559 Y=    0.00071239 Z=   -0.00029384     Total=      
0.00382404

is different from the dipole printed into the designated total dipole 
output file (as follows, see numbers under [debye]):

   # iter_level                  dipole(x,y,z)[atomic 
units]                              
dipole(x,y,z)[debye]                            delta_dipole(x,y,z)[atomic 
units]
   1_0                3.89203822E-01   -4.92892796E-01   -2.49472530E-01    
9.89257347E-01   -1.25280841E+00   -6.34095861E-01    3.89203822E-01   
-4.92892796E-01   -2.49472530E-01

This does not seem to be a case of a missing modulo operation on the 
dipole. Could someone please explain the discrepancy?

My input file is pasted below (there is some extra stuff there also). 
Thanks in advance!
Eero



&GLOBAL

  PROJECT SrTiO3_slab
  RUN_TYPE ENERGY
  PRINT_LEVEL HIGH

&END GLOBAL

&FORCE_EVAL

  METHOD Quickstep                ! GPW method.

  &SUBSYS                                       ! A subsystem: coordinates, 
topology, molecules and cell.

    &CELL                                       ! Supercell setup.
ABC [angstrom] 15.6968 15.6968 20.0
      PERIODIC XYZ                      ! Use PBC in all dimensions.
    &END CELL

    &TOPOLOGY
      &CENTER_COORDINATES TRUE                  ! Center coordinates to 
cell / 2 in each dimension.
      &END CENTER_COORDINATES
    &END TOPOLOGY

    &COORD
    UNIT angstrom
 Sr         0.9780427387        0.9776314907       17.9072990725
 Ti         2.9401427387        2.9397314907       19.8693990725
  O         2.9401427387        2.9397314907       17.9072990725
  O         2.9401427387        0.9776314907       19.8693990725
  O         0.9780427387        2.9397314907       19.8693990725
 Sr         0.9780427387        0.9776314907       21.8314990725
  O         2.9401427387        2.9397314907       21.8314990725
 Sr         0.9780427387        4.9018314907       17.9072990725
 Ti         2.9401427387        6.8639314907       19.8693990725
  O         2.9401427387        6.8639314907       17.9072990725
  O         2.9401427387        4.9018314907       19.8693990725
  O         0.9780427387        6.8639314907       19.8693990725
 Sr         0.9780427387        4.9018314907       21.8314990725
  O         2.9401427387        6.8639314907       21.8314990725
 Sr         0.9780427387        8.8260314907       17.9072990725
 Ti         2.9401427387       10.7881314907       19.8693990725
  O         2.9401427387       10.7881314907       17.9072990725
  O         2.9401427387        8.8260314907       19.8693990725
  O         0.9780427387       10.7881314907       19.8693990725
 Sr         0.9780427387        8.8260314907       21.8314990725
  O         2.9401427387       10.7881314907       21.8314990725
 Sr         0.9780427387       12.7502314907       17.9072990725
 Ti         2.9401427387       14.7123314907       19.8693990725
  O         2.9401427387       14.7123314907       17.9072990725
  O         2.9401427387       12.7502314907       19.8693990725
  O         0.9780427387       14.7123314907       19.8693990725
 Sr         0.9780427387       12.7502314907       21.8314990725
  O         2.9401427387       14.7123314907       21.8314990725
 Sr         4.9022427387        0.9776314907       17.9072990725
 Ti         6.8643427387        2.9397314907       19.8693990725
  O         6.8643427387        2.9397314907       17.9072990725
  O         6.8643427387        0.9776314907       19.8693990725
  O         4.9022427387        2.9397314907       19.8693990725
 Sr         4.9022427387        0.9776314907       21.8314990725
  O         6.8643427387        2.9397314907       21.8314990725
 Sr         4.9022427387        4.9018314907       17.9072990725
 Ti         6.8643427387        6.8639314907       19.8693990725
  O         6.8643427387        6.8639314907       17.9072990725
  O         6.8643427387        4.9018314907       19.8693990725
  O         4.9022427387        6.8639314907       19.8693990725
 Sr         4.9022427387        4.9018314907       21.8314990725
  O         6.8643427387        6.8639314907       21.8314990725
 Sr         4.9022427387        8.8260314907       17.9072990725
 Ti         6.8643427387       10.7881314907       19.8693990725
  O         6.8643427387       10.7881314907       17.9072990725
  O         6.8643427387        8.8260314907       19.8693990725
  O         4.9022427387       10.7881314907       19.8693990725
 Sr         4.9022427387        8.8260314907       21.8314990725
  O         6.8643427387       10.7881314907       21.8314990725
 Sr         4.9022427387       12.7502314907       17.9072990725
 Ti         6.8643427387       14.7123314907       19.8693990725
  O         6.8643427387       14.7123314907       17.9072990725
  O         6.8643427387       12.7502314907       19.8693990725
  O         4.9022427387       14.7123314907       19.8693990725
 Sr         4.9022427387       12.7502314907       21.8314990725
  O         6.8643427387       14.7123314907       21.8314990725
 Sr         8.8264427387        0.9776314907       17.9072990725
 Ti        10.7885427387        2.9397314907       19.8693990725
  O        10.7885427387        2.9397314907       17.9072990725
  O        10.7885427387        0.9776314907       19.8693990725
  O         8.8264427387        2.9397314907       19.8693990725
 Sr         8.8264427387        0.9776314907       21.8314990725
  O        10.7885427387        2.9397314907       21.8314990725
 Sr         8.8264427387        4.9018314907       17.9072990725
 Ti        10.7885427387        6.8639314907       19.8693990725
  O        10.7885427387        6.8639314907       17.9072990725
  O        10.7885427387        4.9018314907       19.8693990725
  O         8.8264427387        6.8639314907       19.8693990725
 Sr         8.8264427387        4.9018314907       21.8314990725
  O        10.7885427387        6.8639314907       21.8314990725
 Sr         8.8264427387        8.8260314907       17.9072990725
 Ti        10.7885427387       10.7881314907       19.8693990725
  O        10.7885427387       10.7881314907       17.9072990725
  O        10.7885427387        8.8260314907       19.8693990725
  O         8.8264427387       10.7881314907       19.8693990725
 Sr         8.8264427387        8.8260314907       21.8314990725
  O        10.7885427387       10.7881314907       21.8314990725
 Sr         8.8264427387       12.7502314907       17.9072990725
 Ti        10.7885427387       14.7123314907       19.8693990725
  O        10.7885427387       14.7123314907       17.9072990725
  O        10.7885427387       12.7502314907       19.8693990725
  O         8.8264427387       14.7123314907       19.8693990725
 Sr         8.8264427387       12.7502314907       21.8314990725
  O        10.7885427387       14.7123314907       21.8314990725
 Sr        12.7506427387        0.9776314907       17.9072990725
 Ti        14.7127427387        2.9397314907       19.8693990725
  O        14.7127427387        2.9397314907       17.9072990725
  O        14.7127427387        0.9776314907       19.8693990725
  O        12.7506427387        2.9397314907       19.8693990725
 Sr        12.7506427387        0.9776314907       21.8314990725
  O        14.7127427387        2.9397314907       21.8314990725
 Sr        12.7506427387        4.9018314907       17.9072990725
 Ti        14.7127427387        6.8639314907       19.8693990725
  O        14.7127427387        6.8639314907       17.9072990725
  O        14.7127427387        4.9018314907       19.8693990725
  O        12.7506427387        6.8639314907       19.8693990725
 Sr        12.7506427387        4.9018314907       21.8314990725
  O        14.7127427387        6.8639314907       21.8314990725
 Sr        12.7506427387        8.8260314907       17.9072990725
 Ti        14.7127427387       10.7881314907       19.8693990725
  O        14.7127427387       10.7881314907       17.9072990725
  O        14.7127427387        8.8260314907       19.8693990725
  O        12.7506427387       10.7881314907       19.8693990725
 Sr        12.7506427387        8.8260314907       21.8314990725
  O        14.7127427387       10.7881314907       21.8314990725
 Sr        12.7506427387       12.7502314907       17.9072990725
 Ti        14.7127427387       14.7123314907       19.8693990725
  O        14.7127427387       14.7123314907       17.9072990725
  O        14.7127427387       12.7502314907       19.8693990725
  O        12.7506427387       14.7123314907       19.8693990725
 Sr        12.7506427387       12.7502314907       21.8314990725
  O        14.7127427387       14.7123314907       21.8314990725
    &END COORD

    &KIND Sr                                    ! Parameters for Sr
      BASIS_SET DZVP-MOLOPT-SR-GTH              ! Set basis and pseudo for 
Sr.
      POTENTIAL GTH-PBE-q10
    &END KIND

    &KIND Ti
      BASIS_SET DZVP-MOLOPT-SR-GTH
      POTENTIAL GTH-PBE-q12
    &END KIND

    &KIND O
      BASIS_SET DZVP-MOLOPT-GTH
      POTENTIAL GTH-PBE-q6
    &END KIND

  &END SUBSYS

 &DFT

    BASIS_SET_FILE_NAME  BASIS_MOLOPT
    POTENTIAL_FILE_NAME  GTH_POTENTIALS

    &POISSON
       PERIODIC XYZ
    &END POISSON

    &QS
      METHOD GPW
      EPS_DEFAULT 1.0E-10   ! Set various epsilons for QS to values that 
will lead
                        ! to energy correct up to 1e-10.
    &END QS

    &MGRID
      CUTOFF 400    ! This is Ecut of eq. 39 in VandeVondele (2005), i.e., 
plane-wave cutoff
                       ! that determines size of finest grid (see caption 
of Fig. 1). Cutoffs for
            ! the subsequent, coarser grid levels are given by eq. 39.
      NGRIDS 4      ! This is N of eq. 39 in VandeVondele (2005), i.e., 
number of grids used.
      REL_CUTOFF 40 ! This controls the grid level onto which Gaussians 
will be mapped.
    &END MGRID

    &XC

      &XC_FUNCTIONAL
    &PBE
                   PARAMETRIZATION ORIG
    &END PBE
      &END XC_FUNCTIONAL

      &VDW_POTENTIAL

         POTENTIAL_TYPE PAIR_POTENTIAL

         &PAIR_POTENTIAL
            TYPE DFTD3
            REFERENCE_FUNCTIONAL PBE
            CALCULATE_C9_TERM .TRUE.
            PARAMETER_FILE_NAME dftd3.dat
            R_CUTOFF 15.0
         &END PAIR_POTENTIAL

      &END VDW_POTENTIAL

    &END XC

    &SCF

      SCF_GUESS RESTART        ! Use data from previous run as initial 
guess for wavefunction.
      EPS_SCF 1.0E-5        ! Threshold for converged total energy.
      MAX_SCF 300        ! Maximum number of SCF iterations performed.

      &OT
        PRECONDITIONER NONE     ! This should be stable with respect to the 
"Cholesky errors"
      &END OT

       &PRINT
        &RESTART ON

                 BACKUP_COPIES 1
                 ADD_LAST NUMERIC

        &END RESTART
       &END PRINT

    &END SCF

    &PRINT

      &E_DENSITY_CUBE

        STRIDE 1 1 1

        &EACH    
                 GEO_OPT 9999
                 JUST_ENERGY 9999
        &END EACH

        ADD_LAST NUMERIC
        
     &END E_DENSITY_CUBE

    &END PRINT

    &LOCALIZE

    MAX_ITER 100000
    EPS_LOCALIZATION 1E-3

    &PRINT

        &PROGRAM_RUN_INFO HIGH
        &END

        &TOTAL_DIPOLE ON

                  FILENAME DIPOLE
                  PERIODIC = T
                  REFERENCE_POINT 0.0 0.0 0.0
            
        &END TOTAL_DIPOLE

    &END PRINT

    &END LOCALIZE

 &END DFT

&END FORCE_EVAL

&MOTION

        &GEO_OPT
        
                TYPE MINIMIZATION
                MAX_FORCE 1E-3    ! In Hartree/Bohr. This value is equal to 
about 5E-2 eV/A.
                MAX_ITER 400      ! Maximum number of ionic steps.
                OPTIMIZER CG      ! Use conjugate gradients.
        
                &CG
                        MAX_STEEP_STEPS 0 ! Don't do SD steps at beginning.
                &END CG

        &END GEO_OPT

    &CONSTRAINT

        &FIXED_ATOMS

            COMPONENTS_TO_FIX XYZ    ! Fix all three coordinates for these 
atoms.
            LIST 7 9 10 11 12 13 14 15 29 31 32 33 34 35 36 37 51 53 54 55 
56 57 58 59 73 75 76 77 78 79 80 81 95 97 98 99 100 101 102 103 117 119 120 
121 122 123 124 125 139 141 142 143 144 145 146 147 161 163 164 165 166 167 
168 169 183 185 186 187 188 189 190 191 205 207 208 209 210 211 212 213 227 
229 230 231 232 233 234 235 249 251 252 253 254 255 256 257 271 273 274 275 
276 277 278 279 293 295 296 297 298 299 300 301 315 317 318 319 320 321 322 
323 337 339 340 341 342 343 344 345


        &END FIXED_ATOMS

    &END CONSTRAINT

        &PRINT

                &TRAJECTORY ON
                           ADD_LAST NUMERIC
                           FILENAME trajectory
                &END TRAJECTORY

        &END PRINT


&END MOTION

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20160404/6996d48e/attachment.html>


More information about the CP2K-user mailing list