Why is total dipole printed in general output file different from that printed in designated .Dipole file?
Eero Holmström
eero.ho... at gmail.com
Mon Apr 4 14:44:00 UTC 2016
Hello,
I'm using CP2K to compute the total dipole of my supercell within a DFT
calculation using the Berry phase method. The results seem reasonable all
in all, but I would like to understand why the dipole printed in the
regular output stream (as follows):
Dipole moment [Debye]
X= 0.00374559 Y= 0.00071239 Z= -0.00029384 Total=
0.00382404
is different from the dipole printed into the designated total dipole
output file (as follows, see numbers under [debye]):
# iter_level dipole(x,y,z)[atomic
units]
dipole(x,y,z)[debye] delta_dipole(x,y,z)[atomic
units]
1_0 3.89203822E-01 -4.92892796E-01 -2.49472530E-01
9.89257347E-01 -1.25280841E+00 -6.34095861E-01 3.89203822E-01
-4.92892796E-01 -2.49472530E-01
This does not seem to be a case of a missing modulo operation on the
dipole. Could someone please explain the discrepancy?
My input file is pasted below (there is some extra stuff there also).
Thanks in advance!
Eero
&GLOBAL
PROJECT SrTiO3_slab
RUN_TYPE ENERGY
PRINT_LEVEL HIGH
&END GLOBAL
&FORCE_EVAL
METHOD Quickstep ! GPW method.
&SUBSYS ! A subsystem: coordinates,
topology, molecules and cell.
&CELL ! Supercell setup.
ABC [angstrom] 15.6968 15.6968 20.0
PERIODIC XYZ ! Use PBC in all dimensions.
&END CELL
&TOPOLOGY
&CENTER_COORDINATES TRUE ! Center coordinates to
cell / 2 in each dimension.
&END CENTER_COORDINATES
&END TOPOLOGY
&COORD
UNIT angstrom
Sr 0.9780427387 0.9776314907 17.9072990725
Ti 2.9401427387 2.9397314907 19.8693990725
O 2.9401427387 2.9397314907 17.9072990725
O 2.9401427387 0.9776314907 19.8693990725
O 0.9780427387 2.9397314907 19.8693990725
Sr 0.9780427387 0.9776314907 21.8314990725
O 2.9401427387 2.9397314907 21.8314990725
Sr 0.9780427387 4.9018314907 17.9072990725
Ti 2.9401427387 6.8639314907 19.8693990725
O 2.9401427387 6.8639314907 17.9072990725
O 2.9401427387 4.9018314907 19.8693990725
O 0.9780427387 6.8639314907 19.8693990725
Sr 0.9780427387 4.9018314907 21.8314990725
O 2.9401427387 6.8639314907 21.8314990725
Sr 0.9780427387 8.8260314907 17.9072990725
Ti 2.9401427387 10.7881314907 19.8693990725
O 2.9401427387 10.7881314907 17.9072990725
O 2.9401427387 8.8260314907 19.8693990725
O 0.9780427387 10.7881314907 19.8693990725
Sr 0.9780427387 8.8260314907 21.8314990725
O 2.9401427387 10.7881314907 21.8314990725
Sr 0.9780427387 12.7502314907 17.9072990725
Ti 2.9401427387 14.7123314907 19.8693990725
O 2.9401427387 14.7123314907 17.9072990725
O 2.9401427387 12.7502314907 19.8693990725
O 0.9780427387 14.7123314907 19.8693990725
Sr 0.9780427387 12.7502314907 21.8314990725
O 2.9401427387 14.7123314907 21.8314990725
Sr 4.9022427387 0.9776314907 17.9072990725
Ti 6.8643427387 2.9397314907 19.8693990725
O 6.8643427387 2.9397314907 17.9072990725
O 6.8643427387 0.9776314907 19.8693990725
O 4.9022427387 2.9397314907 19.8693990725
Sr 4.9022427387 0.9776314907 21.8314990725
O 6.8643427387 2.9397314907 21.8314990725
Sr 4.9022427387 4.9018314907 17.9072990725
Ti 6.8643427387 6.8639314907 19.8693990725
O 6.8643427387 6.8639314907 17.9072990725
O 6.8643427387 4.9018314907 19.8693990725
O 4.9022427387 6.8639314907 19.8693990725
Sr 4.9022427387 4.9018314907 21.8314990725
O 6.8643427387 6.8639314907 21.8314990725
Sr 4.9022427387 8.8260314907 17.9072990725
Ti 6.8643427387 10.7881314907 19.8693990725
O 6.8643427387 10.7881314907 17.9072990725
O 6.8643427387 8.8260314907 19.8693990725
O 4.9022427387 10.7881314907 19.8693990725
Sr 4.9022427387 8.8260314907 21.8314990725
O 6.8643427387 10.7881314907 21.8314990725
Sr 4.9022427387 12.7502314907 17.9072990725
Ti 6.8643427387 14.7123314907 19.8693990725
O 6.8643427387 14.7123314907 17.9072990725
O 6.8643427387 12.7502314907 19.8693990725
O 4.9022427387 14.7123314907 19.8693990725
Sr 4.9022427387 12.7502314907 21.8314990725
O 6.8643427387 14.7123314907 21.8314990725
Sr 8.8264427387 0.9776314907 17.9072990725
Ti 10.7885427387 2.9397314907 19.8693990725
O 10.7885427387 2.9397314907 17.9072990725
O 10.7885427387 0.9776314907 19.8693990725
O 8.8264427387 2.9397314907 19.8693990725
Sr 8.8264427387 0.9776314907 21.8314990725
O 10.7885427387 2.9397314907 21.8314990725
Sr 8.8264427387 4.9018314907 17.9072990725
Ti 10.7885427387 6.8639314907 19.8693990725
O 10.7885427387 6.8639314907 17.9072990725
O 10.7885427387 4.9018314907 19.8693990725
O 8.8264427387 6.8639314907 19.8693990725
Sr 8.8264427387 4.9018314907 21.8314990725
O 10.7885427387 6.8639314907 21.8314990725
Sr 8.8264427387 8.8260314907 17.9072990725
Ti 10.7885427387 10.7881314907 19.8693990725
O 10.7885427387 10.7881314907 17.9072990725
O 10.7885427387 8.8260314907 19.8693990725
O 8.8264427387 10.7881314907 19.8693990725
Sr 8.8264427387 8.8260314907 21.8314990725
O 10.7885427387 10.7881314907 21.8314990725
Sr 8.8264427387 12.7502314907 17.9072990725
Ti 10.7885427387 14.7123314907 19.8693990725
O 10.7885427387 14.7123314907 17.9072990725
O 10.7885427387 12.7502314907 19.8693990725
O 8.8264427387 14.7123314907 19.8693990725
Sr 8.8264427387 12.7502314907 21.8314990725
O 10.7885427387 14.7123314907 21.8314990725
Sr 12.7506427387 0.9776314907 17.9072990725
Ti 14.7127427387 2.9397314907 19.8693990725
O 14.7127427387 2.9397314907 17.9072990725
O 14.7127427387 0.9776314907 19.8693990725
O 12.7506427387 2.9397314907 19.8693990725
Sr 12.7506427387 0.9776314907 21.8314990725
O 14.7127427387 2.9397314907 21.8314990725
Sr 12.7506427387 4.9018314907 17.9072990725
Ti 14.7127427387 6.8639314907 19.8693990725
O 14.7127427387 6.8639314907 17.9072990725
O 14.7127427387 4.9018314907 19.8693990725
O 12.7506427387 6.8639314907 19.8693990725
Sr 12.7506427387 4.9018314907 21.8314990725
O 14.7127427387 6.8639314907 21.8314990725
Sr 12.7506427387 8.8260314907 17.9072990725
Ti 14.7127427387 10.7881314907 19.8693990725
O 14.7127427387 10.7881314907 17.9072990725
O 14.7127427387 8.8260314907 19.8693990725
O 12.7506427387 10.7881314907 19.8693990725
Sr 12.7506427387 8.8260314907 21.8314990725
O 14.7127427387 10.7881314907 21.8314990725
Sr 12.7506427387 12.7502314907 17.9072990725
Ti 14.7127427387 14.7123314907 19.8693990725
O 14.7127427387 14.7123314907 17.9072990725
O 14.7127427387 12.7502314907 19.8693990725
O 12.7506427387 14.7123314907 19.8693990725
Sr 12.7506427387 12.7502314907 21.8314990725
O 14.7127427387 14.7123314907 21.8314990725
&END COORD
&KIND Sr ! Parameters for Sr
BASIS_SET DZVP-MOLOPT-SR-GTH ! Set basis and pseudo for
Sr.
POTENTIAL GTH-PBE-q10
&END KIND
&KIND Ti
BASIS_SET DZVP-MOLOPT-SR-GTH
POTENTIAL GTH-PBE-q12
&END KIND
&KIND O
BASIS_SET DZVP-MOLOPT-GTH
POTENTIAL GTH-PBE-q6
&END KIND
&END SUBSYS
&DFT
BASIS_SET_FILE_NAME BASIS_MOLOPT
POTENTIAL_FILE_NAME GTH_POTENTIALS
&POISSON
PERIODIC XYZ
&END POISSON
&QS
METHOD GPW
EPS_DEFAULT 1.0E-10 ! Set various epsilons for QS to values that
will lead
! to energy correct up to 1e-10.
&END QS
&MGRID
CUTOFF 400 ! This is Ecut of eq. 39 in VandeVondele (2005), i.e.,
plane-wave cutoff
! that determines size of finest grid (see caption
of Fig. 1). Cutoffs for
! the subsequent, coarser grid levels are given by eq. 39.
NGRIDS 4 ! This is N of eq. 39 in VandeVondele (2005), i.e.,
number of grids used.
REL_CUTOFF 40 ! This controls the grid level onto which Gaussians
will be mapped.
&END MGRID
&XC
&XC_FUNCTIONAL
&PBE
PARAMETRIZATION ORIG
&END PBE
&END XC_FUNCTIONAL
&VDW_POTENTIAL
POTENTIAL_TYPE PAIR_POTENTIAL
&PAIR_POTENTIAL
TYPE DFTD3
REFERENCE_FUNCTIONAL PBE
CALCULATE_C9_TERM .TRUE.
PARAMETER_FILE_NAME dftd3.dat
R_CUTOFF 15.0
&END PAIR_POTENTIAL
&END VDW_POTENTIAL
&END XC
&SCF
SCF_GUESS RESTART ! Use data from previous run as initial
guess for wavefunction.
EPS_SCF 1.0E-5 ! Threshold for converged total energy.
MAX_SCF 300 ! Maximum number of SCF iterations performed.
&OT
PRECONDITIONER NONE ! This should be stable with respect to the
"Cholesky errors"
&END OT
&PRINT
&RESTART ON
BACKUP_COPIES 1
ADD_LAST NUMERIC
&END RESTART
&END PRINT
&END SCF
&PRINT
&E_DENSITY_CUBE
STRIDE 1 1 1
&EACH
GEO_OPT 9999
JUST_ENERGY 9999
&END EACH
ADD_LAST NUMERIC
&END E_DENSITY_CUBE
&END PRINT
&LOCALIZE
MAX_ITER 100000
EPS_LOCALIZATION 1E-3
&PRINT
&PROGRAM_RUN_INFO HIGH
&END
&TOTAL_DIPOLE ON
FILENAME DIPOLE
PERIODIC = T
REFERENCE_POINT 0.0 0.0 0.0
&END TOTAL_DIPOLE
&END PRINT
&END LOCALIZE
&END DFT
&END FORCE_EVAL
&MOTION
&GEO_OPT
TYPE MINIMIZATION
MAX_FORCE 1E-3 ! In Hartree/Bohr. This value is equal to
about 5E-2 eV/A.
MAX_ITER 400 ! Maximum number of ionic steps.
OPTIMIZER CG ! Use conjugate gradients.
&CG
MAX_STEEP_STEPS 0 ! Don't do SD steps at beginning.
&END CG
&END GEO_OPT
&CONSTRAINT
&FIXED_ATOMS
COMPONENTS_TO_FIX XYZ ! Fix all three coordinates for these
atoms.
LIST 7 9 10 11 12 13 14 15 29 31 32 33 34 35 36 37 51 53 54 55
56 57 58 59 73 75 76 77 78 79 80 81 95 97 98 99 100 101 102 103 117 119 120
121 122 123 124 125 139 141 142 143 144 145 146 147 161 163 164 165 166 167
168 169 183 185 186 187 188 189 190 191 205 207 208 209 210 211 212 213 227
229 230 231 232 233 234 235 249 251 252 253 254 255 256 257 271 273 274 275
276 277 278 279 293 295 296 297 298 299 300 301 315 317 318 319 320 321 322
323 337 339 340 341 342 343 344 345
&END FIXED_ATOMS
&END CONSTRAINT
&PRINT
&TRAJECTORY ON
ADD_LAST NUMERIC
FILENAME trajectory
&END TRAJECTORY
&END PRINT
&END MOTION
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20160404/6996d48e/attachment.htm>
More information about the CP2K-user
mailing list