<div dir="ltr">Hello,<br><br>I'm using CP2K to compute the total dipole of my supercell within a DFT calculation using the Berry phase method. The results seem reasonable all in all, but I would like to understand why the dipole printed in the regular output stream (as follows):<br><br>   Dipole moment [Debye]<br>   X=    0.00374559 Y=    0.00071239 Z=   -0.00029384     Total=      0.00382404<br><br>is different from the dipole printed into the designated total dipole output file (as follows, see numbers under [debye]):<br><br>   # iter_level                  dipole(x,y,z)[atomic units]                              dipole(x,y,z)[debye]                            delta_dipole(x,y,z)[atomic units]<br>   1_0                3.89203822E-01   -4.92892796E-01   -2.49472530E-01    9.89257347E-01   -1.25280841E+00   -6.34095861E-01    3.89203822E-01   -4.92892796E-01   -2.49472530E-01<br><br>This does not seem to be a case of a missing modulo operation on the dipole. Could someone please explain the discrepancy?<br><br>My input file is pasted below (there is some extra stuff there also). Thanks in advance!<br>Eero<br><br><br><br>&GLOBAL<br><br>  PROJECT SrTiO3_slab<br>  RUN_TYPE ENERGY<br>  PRINT_LEVEL HIGH<br><br>&END GLOBAL<br><br>&FORCE_EVAL<br><br>  METHOD Quickstep                ! GPW method.<br><br>  &SUBSYS                                       ! A subsystem: coordinates, topology, molecules and cell.<br><br>    &CELL                                       ! Supercell setup.<br>ABC [angstrom] 15.6968 15.6968 20.0<br>      PERIODIC XYZ                      ! Use PBC in all dimensions.<br>    &END CELL<br><br>    &TOPOLOGY<br>      &CENTER_COORDINATES TRUE                  ! Center coordinates to cell / 2 in each dimension.<br>      &END CENTER_COORDINATES<br>    &END TOPOLOGY<br><br>    &COORD<br>    UNIT angstrom<br> Sr         0.9780427387        0.9776314907       17.9072990725<br> Ti         2.9401427387        2.9397314907       19.8693990725<br>  O         2.9401427387        2.9397314907       17.9072990725<br>  O         2.9401427387        0.9776314907       19.8693990725<br>  O         0.9780427387        2.9397314907       19.8693990725<br> Sr         0.9780427387        0.9776314907       21.8314990725<br>  O         2.9401427387        2.9397314907       21.8314990725<br> Sr         0.9780427387        4.9018314907       17.9072990725<br> Ti         2.9401427387        6.8639314907       19.8693990725<br>  O         2.9401427387        6.8639314907       17.9072990725<br>  O         2.9401427387        4.9018314907       19.8693990725<br>  O         0.9780427387        6.8639314907       19.8693990725<br> Sr         0.9780427387        4.9018314907       21.8314990725<br>  O         2.9401427387        6.8639314907       21.8314990725<br> Sr         0.9780427387        8.8260314907       17.9072990725<br> Ti         2.9401427387       10.7881314907       19.8693990725<br>  O         2.9401427387       10.7881314907       17.9072990725<br>  O         2.9401427387        8.8260314907       19.8693990725<br>  O         0.9780427387       10.7881314907       19.8693990725<br> Sr         0.9780427387        8.8260314907       21.8314990725<br>  O         2.9401427387       10.7881314907       21.8314990725<br> Sr         0.9780427387       12.7502314907       17.9072990725<br> Ti         2.9401427387       14.7123314907       19.8693990725<br>  O         2.9401427387       14.7123314907       17.9072990725<br>  O         2.9401427387       12.7502314907       19.8693990725<br>  O         0.9780427387       14.7123314907       19.8693990725<br> Sr         0.9780427387       12.7502314907       21.8314990725<br>  O         2.9401427387       14.7123314907       21.8314990725<br> Sr         4.9022427387        0.9776314907       17.9072990725<br> Ti         6.8643427387        2.9397314907       19.8693990725<br>  O         6.8643427387        2.9397314907       17.9072990725<br>  O         6.8643427387        0.9776314907       19.8693990725<br>  O         4.9022427387        2.9397314907       19.8693990725<br> Sr         4.9022427387        0.9776314907       21.8314990725<br>  O         6.8643427387        2.9397314907       21.8314990725<br> Sr         4.9022427387        4.9018314907       17.9072990725<br> Ti         6.8643427387        6.8639314907       19.8693990725<br>  O         6.8643427387        6.8639314907       17.9072990725<br>  O         6.8643427387        4.9018314907       19.8693990725<br>  O         4.9022427387        6.8639314907       19.8693990725<br> Sr         4.9022427387        4.9018314907       21.8314990725<br>  O         6.8643427387        6.8639314907       21.8314990725<br> Sr         4.9022427387        8.8260314907       17.9072990725<br> Ti         6.8643427387       10.7881314907       19.8693990725<br>  O         6.8643427387       10.7881314907       17.9072990725<br>  O         6.8643427387        8.8260314907       19.8693990725<br>  O         4.9022427387       10.7881314907       19.8693990725<br> Sr         4.9022427387        8.8260314907       21.8314990725<br>  O         6.8643427387       10.7881314907       21.8314990725<br> Sr         4.9022427387       12.7502314907       17.9072990725<br> Ti         6.8643427387       14.7123314907       19.8693990725<br>  O         6.8643427387       14.7123314907       17.9072990725<br>  O         6.8643427387       12.7502314907       19.8693990725<br>  O         4.9022427387       14.7123314907       19.8693990725<br> Sr         4.9022427387       12.7502314907       21.8314990725<br>  O         6.8643427387       14.7123314907       21.8314990725<br> Sr         8.8264427387        0.9776314907       17.9072990725<br> Ti        10.7885427387        2.9397314907       19.8693990725<br>  O        10.7885427387        2.9397314907       17.9072990725<br>  O        10.7885427387        0.9776314907       19.8693990725<br>  O         8.8264427387        2.9397314907       19.8693990725<br> Sr         8.8264427387        0.9776314907       21.8314990725<br>  O        10.7885427387        2.9397314907       21.8314990725<br> Sr         8.8264427387        4.9018314907       17.9072990725<br> Ti        10.7885427387        6.8639314907       19.8693990725<br>  O        10.7885427387        6.8639314907       17.9072990725<br>  O        10.7885427387        4.9018314907       19.8693990725<br>  O         8.8264427387        6.8639314907       19.8693990725<br> Sr         8.8264427387        4.9018314907       21.8314990725<br>  O        10.7885427387        6.8639314907       21.8314990725<br> Sr         8.8264427387        8.8260314907       17.9072990725<br> Ti        10.7885427387       10.7881314907       19.8693990725<br>  O        10.7885427387       10.7881314907       17.9072990725<br>  O        10.7885427387        8.8260314907       19.8693990725<br>  O         8.8264427387       10.7881314907       19.8693990725<br> Sr         8.8264427387        8.8260314907       21.8314990725<br>  O        10.7885427387       10.7881314907       21.8314990725<br> Sr         8.8264427387       12.7502314907       17.9072990725<br> Ti        10.7885427387       14.7123314907       19.8693990725<br>  O        10.7885427387       14.7123314907       17.9072990725<br>  O        10.7885427387       12.7502314907       19.8693990725<br>  O         8.8264427387       14.7123314907       19.8693990725<br> Sr         8.8264427387       12.7502314907       21.8314990725<br>  O        10.7885427387       14.7123314907       21.8314990725<br> Sr        12.7506427387        0.9776314907       17.9072990725<br> Ti        14.7127427387        2.9397314907       19.8693990725<br>  O        14.7127427387        2.9397314907       17.9072990725<br>  O        14.7127427387        0.9776314907       19.8693990725<br>  O        12.7506427387        2.9397314907       19.8693990725<br> Sr        12.7506427387        0.9776314907       21.8314990725<br>  O        14.7127427387        2.9397314907       21.8314990725<br> Sr        12.7506427387        4.9018314907       17.9072990725<br> Ti        14.7127427387        6.8639314907       19.8693990725<br>  O        14.7127427387        6.8639314907       17.9072990725<br>  O        14.7127427387        4.9018314907       19.8693990725<br>  O        12.7506427387        6.8639314907       19.8693990725<br> Sr        12.7506427387        4.9018314907       21.8314990725<br>  O        14.7127427387        6.8639314907       21.8314990725<br> Sr        12.7506427387        8.8260314907       17.9072990725<br> Ti        14.7127427387       10.7881314907       19.8693990725<br>  O        14.7127427387       10.7881314907       17.9072990725<br>  O        14.7127427387        8.8260314907       19.8693990725<br>  O        12.7506427387       10.7881314907       19.8693990725<br> Sr        12.7506427387        8.8260314907       21.8314990725<br>  O        14.7127427387       10.7881314907       21.8314990725<br> Sr        12.7506427387       12.7502314907       17.9072990725<br> Ti        14.7127427387       14.7123314907       19.8693990725<br>  O        14.7127427387       14.7123314907       17.9072990725<br>  O        14.7127427387       12.7502314907       19.8693990725<br>  O        12.7506427387       14.7123314907       19.8693990725<br> Sr        12.7506427387       12.7502314907       21.8314990725<br>  O        14.7127427387       14.7123314907       21.8314990725<br>    &END COORD<br><br>    &KIND Sr                                    ! Parameters for Sr<br>      BASIS_SET DZVP-MOLOPT-SR-GTH              ! Set basis and pseudo for Sr.<br>      POTENTIAL GTH-PBE-q10<br>    &END KIND<br><br>    &KIND Ti<br>      BASIS_SET DZVP-MOLOPT-SR-GTH<br>      POTENTIAL GTH-PBE-q12<br>    &END KIND<br><br>    &KIND O<br>      BASIS_SET DZVP-MOLOPT-GTH<br>      POTENTIAL GTH-PBE-q6<br>    &END KIND<br><br>  &END SUBSYS<br><br> &DFT<br><br>    BASIS_SET_FILE_NAME  BASIS_MOLOPT<br>    POTENTIAL_FILE_NAME  GTH_POTENTIALS<br><br>    &POISSON<br>       PERIODIC XYZ<br>    &END POISSON<br><br>    &QS<br>      METHOD GPW<br>      EPS_DEFAULT 1.0E-10   ! Set various epsilons for QS to values that will lead<br>                        ! to energy correct up to 1e-10.<br>    &END QS<br><br>    &MGRID<br>      CUTOFF 400    ! This is Ecut of eq. 39 in VandeVondele (2005), i.e., plane-wave cutoff<br>                       ! that determines size of finest grid (see caption of Fig. 1). Cutoffs for<br>            ! the subsequent, coarser grid levels are given by eq. 39.<br>      NGRIDS 4      ! This is N of eq. 39 in VandeVondele (2005), i.e., number of grids used.<br>      REL_CUTOFF 40 ! This controls the grid level onto which Gaussians will be mapped.<br>    &END MGRID<br><br>    &XC<br><br>      &XC_FUNCTIONAL<br>    &PBE<br>                   PARAMETRIZATION ORIG<br>    &END PBE<br>      &END XC_FUNCTIONAL<br><br>      &VDW_POTENTIAL<br><br>         POTENTIAL_TYPE PAIR_POTENTIAL<br><br>         &PAIR_POTENTIAL<br>            TYPE DFTD3<br>            REFERENCE_FUNCTIONAL PBE<br>            CALCULATE_C9_TERM .TRUE.<br>            PARAMETER_FILE_NAME dftd3.dat<br>            R_CUTOFF 15.0<br>         &END PAIR_POTENTIAL<br><br>      &END VDW_POTENTIAL<br><br>    &END XC<br><br>    &SCF<br><br>      SCF_GUESS RESTART        ! Use data from previous run as initial guess for wavefunction.<br>      EPS_SCF 1.0E-5        ! Threshold for converged total energy.<br>      MAX_SCF 300        ! Maximum number of SCF iterations performed.<br><br>      &OT<br>        PRECONDITIONER NONE     ! This should be stable with respect to the "Cholesky errors"<br>      &END OT<br><br>       &PRINT<br>        &RESTART ON<br><br>                 BACKUP_COPIES 1<br>                 ADD_LAST NUMERIC<br><br>        &END RESTART<br>       &END PRINT<br><br>    &END SCF<br><br>    &PRINT<br><br>      &E_DENSITY_CUBE<br><br>        STRIDE 1 1 1<br><br>        &EACH    <br>                 GEO_OPT 9999<br>                 JUST_ENERGY 9999<br>        &END EACH<br><br>        ADD_LAST NUMERIC<br>        <br>     &END E_DENSITY_CUBE<br><br>    &END PRINT<br><br>    &LOCALIZE<br><br>    MAX_ITER 100000<br>    EPS_LOCALIZATION 1E-3<br><br>    &PRINT<br><br>        &PROGRAM_RUN_INFO HIGH<br>        &END<br><br>        &TOTAL_DIPOLE ON<br><br>                  FILENAME DIPOLE<br>                  PERIODIC = T<br>                  REFERENCE_POINT 0.0 0.0 0.0<br>            <br>        &END TOTAL_DIPOLE<br><br>    &END PRINT<br><br>    &END LOCALIZE<br><br> &END DFT<br><br>&END FORCE_EVAL<br><br>&MOTION<br><br>        &GEO_OPT<br>        <br>                TYPE MINIMIZATION<br>                MAX_FORCE 1E-3    ! In Hartree/Bohr. This value is equal to about 5E-2 eV/A.<br>                MAX_ITER 400      ! Maximum number of ionic steps.<br>                OPTIMIZER CG      ! Use conjugate gradients.<br>        <br>                &CG<br>                        MAX_STEEP_STEPS 0 ! Don't do SD steps at beginning.<br>                &END CG<br><br>        &END GEO_OPT<br><br>    &CONSTRAINT<br><br>        &FIXED_ATOMS<br><br>            COMPONENTS_TO_FIX XYZ    ! Fix all three coordinates for these atoms.<br>            LIST 7 9 10 11 12 13 14 15 29 31 32 33 34 35 36 37 51 53 54 55 56 57 58 59 73 75 76 77 78 79 80 81 95 97 98 99 100 101 102 103 117 119 120 121 122 123 124 125 139 141 142 143 144 145 146 147 161 163 164 165 166 167 168 169 183 185 186 187 188 189 190 191 205 207 208 209 210 211 212 213 227 229 230 231 232 233 234 235 249 251 252 253 254 255 256 257 271 273 274 275 276 277 278 279 293 295 296 297 298 299 300 301 315 317 318 319 320 321 322 323 337 339 340 341 342 343 344 345<br><br><br>        &END FIXED_ATOMS<br><br>    &END CONSTRAINT<br><br>        &PRINT<br><br>                &TRAJECTORY ON<br>                           ADD_LAST NUMERIC<br>                           FILENAME trajectory<br>                &END TRAJECTORY<br><br>        &END PRINT<br><br><br>&END MOTION<br><br></div>