[CP2K:10343] transition dipole moment
Xiaoming Wang
wxia... at gmail.com
Thu May 31 12:18:06 UTC 2018
Dear Prof. Hutter,
Thanks for your reply.
In the equation, k is 2*pi/L (L is the length of the supercell), right?
Btw, how to evaluate the integral using atomic basis functions?
I guess I need first print the EIGENVECTORs of the corresponding
molecular orbitals. Then, replace the |phi_A> with the printed
coefficients. But can this eliminate the r dependence? Also, the printed
coefficients by cp2k are not normalized, can I use them directly?
Can you give me any clue?
Best,
Xiaoming
On Thursday, May 31, 2018 at 5:28:04 AM UTC-4, jgh wrote:
>
> Hi
>
> this property is on our TO DO list. However, I cannot say when
> it will become available.
>
> If you want to calculate it yourself from the MO cube files
> you need to use the Berry phase algorithm, meaning you need
>
> mu = IMAG LOG <phi_a | exp(i*k*r) |phi_b>
>
> However, this can be calculated much more efficiently from
> the atomic basis functions.
>
> regards
>
> Juerg Hutter
> --------------------------------------------------------------
> Juerg Hutter Phone : ++41 44 635 4491
> Institut für Chemie C FAX : ++41 44 635 6838
> Universität Zürich E-mail: hut... at chem.uzh.ch
> <javascript:>
> Winterthurerstrasse 190
> CH-8057 Zürich, Switzerland
> ---------------------------------------------------------------
>
> -----cp... at googlegroups.com <javascript:> wrote: -----
> To: cp2k <cp... at googlegroups.com <javascript:>>
> From: Xiaoming Wang
> Sent by: cp... at googlegroups.com <javascript:>
> Date: 05/24/2018 05:07PM
> Subject: [CP2K:10343] transition dipole moment
>
> Hi,
>
> Is it possible for CP2K to output the transition dipole moment <phi_A | r
> | phi_B> between two KS states, say HOMO to LUMO transition?
> I tried to calculate the integral by printing the MO_CUBE files which are
> the phi_A and phi_B and then do the integration. This is fine for
> molecules or in other word non-periodic systems. But for periodic systems,
> the result was not as expected, maybe due to the position
> operator is ill-defined in that case. So how to evaluate the transition
> dipole integral for periodic systems with the MO_CUBE files known?
>
> Best,
> Xiaoming
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+... at googlegroups.com <javascript:>.
> To post to this group, send email to cp... at googlegroups.com <javascript:>.
>
> Visit this group at https://groups.google.com/group/cp2k.
> For more options, visit https://groups.google.com/d/optout.
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20180531/c0f73344/attachment.htm>
More information about the CP2K-user
mailing list