<div>Dear Frederick,</div><div>Thank you again for your very helpful insight. It starts to come together now. I've checked the excited state properties for few smaller bio-molecules with different approaches and also with different software packages and I was getting reasonable results (with the PBE0 pseudopotential). However, I haven't done the same for the gold and I was blindly assuming that the pseudopotential will be good as well. I'll repeat the calculations with the new generated pseudopotential for the specific range separated functional I use to check the effects.</div><div>Thank you also for the links concerning the basis set fitting. I'll take a look at them.</div><div><br /></div><div>Best wishes,</div><div>Vladislav <br /></div><br /><div class="gmail_quote"><div dir="auto" class="gmail_attr">Dne čtvrtek 15. srpna 2024 v 11:31:14 UTC+2 uživatel Frederick Stein napsal:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><div>Dear Vladislav,</div><div>If the basis set is large enough, it does not matter for what functional it has been optimized. This does not apply to pseudopotentials. Those optimized for PBE0 may work in case of standard elements (HCNO) but not necessarily for transition metals. In case of an optimization, they should be a reasonable first guess. Try to optimize them and compare the results.<br></div><div>I have no experience in creating basis sets with the atom code. Please consult Jürg Hutter, he is the most experience here regarding basis set and pseudopotential optimizations (compare his extensive collection of self-optimized basis sets and pseudopotentials <a href="https://github.com/juerghutter/BASIS" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=cs&q=https://github.com/juerghutter/BASIS&source=gmail&ust=1723803273172000&usg=AOvVaw18CiS6iHwXXR-BTmMJiyht">https://github.com/juerghutter/BASIS</a> and <a href="https://github.com/juerghutter/GTH" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=cs&q=https://github.com/juerghutter/GTH&source=gmail&ust=1723803273172000&usg=AOvVaw0nqcUwpUINvJ52KBykbvwl">https://github.com/juerghutter/GTH</a>). I do have some experience with optimizing basis sets using a script provided by CP2K (<a href="https://github.com/cp2k/cp2k/tree/master/tools/scriptmini" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=cs&q=https://github.com/cp2k/cp2k/tree/master/tools/scriptmini&source=gmail&ust=1723803273172000&usg=AOvVaw0IaVy3jxeBlGnAgcCiWCvu">https://github.com/cp2k/cp2k/tree/master/tools/scriptmini</a>) to optimize correlation consistent basis sets.</div><div>Best,</div><div>Frederick<br></div><br><div class="gmail_quote"><div dir="auto" class="gmail_attr">Vladislav Sláma schrieb am Donnerstag, 15. August 2024 um 10:50:43 UTC+2:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div>Dear Frederick,</div><div>Thank you very much for your suggestions regarding the pseudopotential. <span lang="en"><span>Indeed, I copied the XC section from my testing calculations with the pseudopotentials and basis optimized for the PBE0 without any big changes. I'll try to look more into  ATOM%USE_GAUSS_HERMITE and ATOM%GRID_POINTS_GH options to refine the pseudopotential even more. In general do you think that the pseudopotentials and basis optimized for hybrid functionals (for example PBE0) should be also good enough to be used with the range separated hybrid functionals? I did some calculations of the excited states of a small gold nanoparticle functionalized with one photoactive biomolecule (with linker long enough tot to have charge transfer between them) and I see quite large mixing between the gold and molecular excitations. I wanted to be sure that the mixing is the real effect or just an artifact originating from the improper pseudopotential and basis for the range separated functional. This was my original motivation for the fitting.</span></span></div><div><span lang="en"><span>I would like to ask you one more question related to the basis set fitting. Is the correct procedure to fit the GAUSSIAN orbitals and then do the contraction to DZVP basis with some other code, or is it possible to do it directly also in CP2K within the ATOM code and obtain coefficients and exponents of the contracted basis?<br></span></span></div><div><span lang="en"><span><br></span></span></div><div><span lang="en"><span>Thank you again for your insight. Best wishes,</span></span></div><div><span lang="en"><span>Vladislav<br></span></span></div><br><div class="gmail_quote"><div dir="auto" class="gmail_attr">Dne středa 14. srpna 2024 v 18:03:21 UTC+2 uživatel Frederick Stein napsal:<br></div></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div>Dear Vladislav,</div><div>Generally, pseudopotentials optimized for hybrid functionals are a good first guess. I implemented pseudopotential optimization with the longrange-operator some years ago and optimized it for a few elements. IIRC, the relevant keywords are here:</div><div>- ATOM%USE_GAUSS_HERMITE (better convergence) and ATOM%GRID_POINTS_GH to tune the accuracy of the longrange operator</div><div>- ATOM%EXCHANGE_INTEGRALS requires the default NUMERIC (analytic integrals are not available for the longrange operator)</div><div>- HF%SCREENING and HF%MEMORY are ignored (the sections were just copied from the original HF section)</div><div>- check convergence of EPS_SCF and GRID_POINTS keywords and the ACCURACY keyword in the POWELL section</div><div>- The assignment of orbitals to occupied/semicore/core must be correct<br></div><div>Consult the regtests ATOM/regtest-pseudo/C-rsPBE-* for further reference (regtests are supposed to run fast).<br></div><div>HTH,</div><div>Frederick<br></div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">Vladislav Sláma schrieb am Mittwoch, 14. August 2024 um 14:37:11 UTC+2:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">


        
        <span></span>
        
        

<p style="margin-bottom:0in;line-height:100%">
Hello,</p>
<p style="margin-bottom:0in;line-height:100%">I would like to use
wB97XD functional (or some other range-separated one) with Au atoms
for which I would like to fit pseudopotential and DZVP basis set.
With pseudopotential I tried to follow what I have found in the test
folder and started from the PBE pseudopotential parameters.</p>

<p style="margin-bottom:0in;line-height:100%">1) I would like to
ask you if the input for the pseudopotential parameters fitting with
wB97XD is reasonable, because I’ve never done such calculations?</p>

<p style="margin-bottom:0in;line-height:100%">2) What would be the
correct strategy to get the DZVP basis set for the Au atoms with
fitted pseudopotential? The only calculation I managed to run
successfully (not sure if it is correct) was to fit the GAUSSIAN
basis set. However, for the CONTRACTED_GTO calculation always failed,
sometimes without specifying the error. Could you please suggest me
how to do this calculation? I’ve never needed to fit my own basis
and pseudopotential so any suggestion or advice is greatly
appreciated.</p>

<p style="margin-bottom:0in;line-height:100%">I’m including the
input and output files in the attachment and below also the input for
the GAUSSIAN basis set generation.</p><p style="margin-bottom:0in;line-height:100%">Best wishes and thank you for your help,<br></p><p style="margin-bottom:0in;line-height:100%">Vladislav</p><p style="margin-bottom:0in;line-height:100%"><br></p><p style="margin-bottom:0in;line-height:100%">Input I used for GAUSSIAN basis set fitting:</p><p style="margin-bottom:0in;line-height:100%"> &GLOBAL<br>  PROGRAM_NAME ATOM<br>&END GLOBAL<br>&ATOM<br>  ELEMENT Au<br>  RUN_TYPE BASIS_OPTIMIZATION<br>  ELECTRON_CONFIGURATION  CORE 5d10 6s1<br>  CORE [Xe] 4f14<br>  MAX_ANGULAR_MOMENTUM 3<br>  COULOMB_INTEGRALS ANALYTIC<br>  EXCHANGE_INTEGRALS NUMERIC<br>  &METHOD<br>     METHOD_TYPE  KOHN-SHAM<br>     RELATIVISTIC DKH(3)<br>     &XC<br>        &XC_FUNCTIONAL<br>           &HYB_GGA_XC_WB97X_D<br>           &END  HYB_GGA_XC_WB97X_D<br>        &END XC_FUNCTIONAL<br>        &HF<br>          FRACTION 1.000<br>          &SCREENING<br>            EPS_SCHWARZ 1.0E-14<br>            SCREEN_ON_INITIAL_P TRUE<br>          &END<br>          &INTERACTION_POTENTIAL<br>             POTENTIAL_TYPE MIX_CL<br>             SCALE_COULOMB   0.22036<br>             SCALE_LONGRANGE 0.77964<br>             OMEGA 0.20<br>          &END<br>          &MEMORY<br>            MAX_MEMORY 4000<br>            EPS_STORAGE_SCALING 0.1<br>          &END<br>        &END<br>     &END XC<br>  &END METHOD<br>  &OPTIMIZATION<br>    MAX_ITER 500<br>    EPS_SCF 1.e-08<br>  &END<br>  &PP_BASIS<br>      NUM_GTO  6 6 6<br>      S_EXPONENTS 3.73260507 1.83419039 0.80906390 0.34515101 0.13836655 0.04967010<br>      P_EXPONENTS 3.73260507 1.83419039 0.80906390 0.34515101 0.13836655 0.04967010<br>      D_EXPONENTS 3.73260507 1.83419039 0.80906390 0.34515101 0.13836655 0.04967010<br>     EPS_EIGENVALUE 1.E-14<br>  &END PP_BASIS<br>  &POTENTIAL<br>    PSEUDO_TYPE GTH<br>    &GTH_POTENTIAL<br>    1    0   10    0<br>    0.59017106458211       1   11.68962795194189<br>       3<br>    0.52046766556862       2    2.20132630023183   -1.04609353504732<br>                                                    2.87007982647554<br>    0.63876105996853       2    0.42941169563709   -0.86977143557004<br>                                                    2.07606707053651<br>    0.44087154543382       2   -4.71769832312536    0.72776406084227<br>                                                   -1.72921082494821<br>    &END<br>  &END POTENTIAL<br>  &POWELL<br>     ACCURACY 1.e-8<br>     STEP_SIZE 0.3<br>  &END POWELL<br>&END ATOM</p>

</blockquote></div></blockquote></div></blockquote></div></blockquote></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/07ee05ba-9e27-4460-a278-e9389c3347ecn%40googlegroups.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/07ee05ba-9e27-4460-a278-e9389c3347ecn%40googlegroups.com</a>.<br />