<div dir="ltr"><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Dear Prof. Jurg,</span></p><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><br></p><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Thank you for your response. I am currently exploring ROKS schemes to  model excited state potential energy surfaces and have several questions to improve my understanding:</span></p><ol style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><li style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt;list-style-type:decimal"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Does the LOW_SPIN_ROKS approach derive from your collaboration with Imgrad in the study "Molecular dynamics in low-spin excited states" [J. Chem. Phys. 108, 10 (1998)], and its subsequent extension to accommodate any number of unpaired electrons [Chem. Phys. 373, 283 (2010)]?</span></li><li style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt;list-style-type:decimal"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">In my investigation, I calculated the quartet to doublet excitation energy using the von Barth/spin projection method combined with UKS, yielding results remarkably close to experimental data. However, LOW_SPIN_ROKS calculations yielded energies significantly higher than expected. Considering I am examining localized defect states (d orbitals of Chromium) in a crystal environment, localized orbitals might shift above the conduction band minimum. This scenario could misrepresent the configuration as (a b CBM) rather than the intended (a b c). Is there a way to investigate single-particle states within LOW_SPIN_ROKS calculations to address this concern?</span></li><li style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt;list-style-type:decimal"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Upon reviewing Filatov's publication (Chem. Phys. Letter 288, 689 (1998)), I understand it lays the foundation for a formal multi-determinant state approach within ROKS. This approach appears to be activated through the "ROKS_SCHEME GENERAL" setting. However, looking at the code, specifically "SUBROUTINE combine_ks_matrices_2," suggests its current implementation is limited to single-determinant solutions due to the absence of iterations over energy scaling parameters. Could you confirm if my observation is accurate?</span></li><li style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt;list-style-type:decimal"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Lastly, I'd like to know whether the MOM method can be applied to HIGH-SPIN or GENERAL schemes. I aim to model spin-contaminated configurations such as |a b \bar{c}|, which seem unattainable with the MULTIPLICITY 2 keyword since it strictly enforces a |a \bar{a} b| configuration. </span></li></ol><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><br></p><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">I appreciate your time and look forward to your replies.</span></p><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><br></p><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Best regards, </span></p><p style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt"><span style="color:rgb(14,16,26);background:transparent;margin-top:0pt;margin-bottom:0pt">Lukas</span></p></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Mar 4, 2024 at 3:07 PM Jürg Hutter <<a href="mailto:hutter@chem.uzh.ch">hutter@chem.uzh.ch</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Hi<br>
<br>
these methods / implementations are based on the work by Irmgard Frank.<br>
You can find earlier work e.g. by Claude Daul and also M. Filatov.<br>
There has been recently some new work by other groups that is closely related.<br>
<br>
1) this is for single determinant only (all excess electrons in one spin channel)<br>
2) I think it is correct, but I would have to look more closely<br>
3) ROKS was implemented before MGGAs. It seems the ROKS branch was not updated for these type of functionals.<br>
4) See the work of Daul and Filatov<br>
<br>
regards<br>
JH<br>
<br>
________________________________________<br>
From: <a href="mailto:cp2k@googlegroups.com" target="_blank">cp2k@googlegroups.com</a> <<a href="mailto:cp2k@googlegroups.com" target="_blank">cp2k@googlegroups.com</a>> on behalf of Lukas Razinkovas <<a href="mailto:lukasrazinkovas@gmail.com" target="_blank">lukasrazinkovas@gmail.com</a>><br>
Sent: Sunday, March 3, 2024 8:19 AM<br>
To: cp2k<br>
Subject: [CP2K:19983] Inquiry on ROKS Calculation Schemes within CP2K<br>
<br>
Dear CP2K Community,<br>
<br>
<br>
As a newcomer to CP2K (my experience is with VASP, GPAW, and Quantum Espresso), I have been exploring CP2K's capabilities, particularly for modeling low-spin bi- and tri-radical states of crystal defects through ROKS (Restricted Open-Shell) calculations for potential energy surface analysis. I am pleasantly surprised by this code's performance and capabilities.<br>
<br>
<br>
However, I am slightly confused with ROKS calculations within CP2K, especially regarding the implementation and application of its varying schemes, namely:<br>
<br>
<br>
  *   High-Spin ROKS (default ROKS_SCHEME value)<br>
  *   GENERAL (an alternative ROKS_SCHEME value)<br>
  *   Low-Spin ROKS<br>
<br>
<br>
I would greatly appreciate any directed literature or resources that elaborate on these schemes' implementation and practical use.<br>
<br>
<br>
Additionally, I have a few specific inquiries that I hope could be clarified:<br>
<br>
<br>
  1.  Is the High-Spin ROKS scheme tailored for single-determinant maximal spin states, where all unpaired electrons align in one spin direction? Can it also model mixed (spin-contaminated) single-determinant states for the von Barth/approximate spin projection method?<br>
  2.  For modeling the doublet state in a triradical scenario, I am considering the following configuration:<br>
&LOW_SPIN_ROKS<br>
  # DOBLET: E(D) = E(Q) - 3/2*E(Q) + 3/2*E(M)<br>
  ENERGY_SCALING -1.5 1.5<br>
  SPIN_CONFIGURATION 1 1 1 # Psi(Q) |a a a><br>
  SPIN_CONFIGURATION 1 1 2 # Psi(M) |a a b><br>
&END LOW_SPIN_ROKS<br>
Is this the correct approach?<br>
  3.  I encountered difficulties running LOW_SPIN_ROKS with the R2SCAN functional (however, it worked with PBE). Are there compatibility issues with meta-GGA functionals?<br>
  4.  Can the energy outcomes from maximal-spin and low-spin calculations be compared to deduce exchange splitting (excitation) energy?<br>
<br>
<br>
I look forward to any recommendations or advice you could provide.<br>
<br>
<br>
<br>
Best wishes,<br>
<br>
Lukas<br>
<br>
--<br>
You received this message because you are subscribed to the Google Groups "cp2k" group.<br>
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k%2Bunsubscribe@googlegroups.com" target="_blank">cp2k+unsubscribe@googlegroups.com</a><mailto:<a href="mailto:cp2k%2Bunsubscribe@googlegroups.com" target="_blank">cp2k+unsubscribe@googlegroups.com</a>>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/025e1887-09f0-4460-a1ae-24662777baf9n%40googlegroups.com" rel="noreferrer" target="_blank">https://groups.google.com/d/msgid/cp2k/025e1887-09f0-4460-a1ae-24662777baf9n%40googlegroups.com</a><<a href="https://groups.google.com/d/msgid/cp2k/025e1887-09f0-4460-a1ae-24662777baf9n%40googlegroups.com?utm_medium=email&utm_source=footer" rel="noreferrer" target="_blank">https://groups.google.com/d/msgid/cp2k/025e1887-09f0-4460-a1ae-24662777baf9n%40googlegroups.com?utm_medium=email&utm_source=footer</a>>.<br>
<br>
-- <br>
You received this message because you are subscribed to a topic in the Google Groups "cp2k" group.<br>
To unsubscribe from this topic, visit <a href="https://groups.google.com/d/topic/cp2k/xPbCQHw3caA/unsubscribe" rel="noreferrer" target="_blank">https://groups.google.com/d/topic/cp2k/xPbCQHw3caA/unsubscribe</a>.<br>
To unsubscribe from this group and all its topics, send an email to <a href="mailto:cp2k%2Bunsubscribe@googlegroups.com" target="_blank">cp2k+unsubscribe@googlegroups.com</a>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/ZR0P278MB0759EFE14E0AC16C9A0570A39F232%40ZR0P278MB0759.CHEP278.PROD.OUTLOOK.COM" rel="noreferrer" target="_blank">https://groups.google.com/d/msgid/cp2k/ZR0P278MB0759EFE14E0AC16C9A0570A39F232%40ZR0P278MB0759.CHEP278.PROD.OUTLOOK.COM</a>.<br>
</blockquote></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/CAFKUn1oRRs%3DNy%2BDh0%3DwEhLtF3kRtu1sLq%3DcZOkWBfzpxkK55wA%40mail.gmail.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/CAFKUn1oRRs%3DNy%2BDh0%3DwEhLtF3kRtu1sLq%3DcZOkWBfzpxkK55wA%40mail.gmail.com</a>.<br />