<div><div dir="auto">Dear Marcella, </div><div dir="auto"><br></div><div dir="auto">Thank you very much for your reply.</div><div dir="auto"><br></div><div dir="auto">Actually, I’m using the Berry phase approach to compute the total dipole of the simulation box, thus I have not Wannier centres from my calculations at the moment.</div><div dir="auto"><br></div><div dir="auto">I tried several keywords for the minimisation of the wavefunction on single point calculations in gas phase. Conjugate Gradient in combination with the FULL_ALL preconditioner seems to speed up the calculation compared to DIIS and FULL_KINETIC preconditioner. I’ll try to use these </div><div dir="auto">settings for the MD in bulk.</div><div dir="auto"><br></div><div dir="auto" style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0);color:rgb(0,0,0)"><div dir="auto"><span style="font-size:16px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration:none;float:none;display:inline!important;color:rgb(0,0,0)">Using larger cutoffs for the electron density makes the calculations even slower. </span></div><div dir="auto"><span style="font-size:16px;font-style:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;text-decoration:none;float:none;display:inline!important;color:rgb(0,0,0)"><br></span></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0);color:rgb(0,0,0)" dir="auto"><font style="color:rgb(0,0,0)">Concerning the band gap, I’ll check whether experimental data are available in the literature to assess the accuracy of my calculations.</font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0)" dir="auto"><font style="color:rgb(0,0,0)"><br></font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0)" dir="auto"><font style="color:rgb(0,0,0)">Thank you again for your hints.</font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0)" dir="auto"><font style="color:rgb(0,0,0)"><br></font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0)" dir="auto"><font style="color:rgb(0,0,0)">Best ragards,</font></div><div style="background-color:rgba(0,0,0,0);border-color:rgb(0,0,0)" dir="auto"><font style="color:rgb(0,0,0)">Emma Rossi</font></div><br></div></div><div><div dir="auto"><br><div class="gmail_quote" dir="auto"><div dir="ltr" class="gmail_attr">Il giorno ven 20 ott 2023 alle 12:49 Marcella Iannuzzi <<a href="mailto:marci.akira@gmail.com" target="_blank">marci.akira@gmail.com</a>> ha scritto:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;padding-left:1ex;border-left-color:rgb(204,204,204)"><div><br></div><div><br></div>Dear Emma,<div><br></div><div>Both Mg and Na have quite hard functions in the basis set, it might be that the cutoff of 600 Ry is not sufficient.</div><div>Have you checked whether the electronic structure is OK (e.g. energy gap) ? </div><div>Often the localisation algorithm shows convergence problems when there are intrinsically very delocalised states (see metals).</div><div>Maybe this is not the problem though. Are the Wannier centres after localisation at the expected positions ? </div><div><br></div><div>Regards</div><div>Marcella</div><div><br></div><div><br></div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Friday, October 20, 2023 at 11:09:48 AM UTC+2 Emma Rossi wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;padding-left:1ex;border-left-color:rgb(204,204,204)">Dear developers and CP2K users,<br><br><div>I'm running AIMD simulations and computing the total dipole moment of a 15 A cubic box (Berry phase approach) containing water molecules, a phosphate chain (-4) and a divalent cation, either Zn2+ or Mg2+. </div><div>For Mg2+, the convergence of the MOs localization process at each step is tremendously slower (one/two order of magnitude) compared to the box with Zn2+. I cannot figure out the reason of such behaviour. I use the default setting for the LOCALIZE section, which employs the JACOBI method.</div><br><div>The -2 net charge of the system is counterbalanced by uniform background. 600 Ry cutoff for the auxiliary PW expansion of the electron density (500 or 400 Ry are used in the literature for Zn2+ and Mg2+ respectively) and BLYP XC are used. DZVP-MOLOPT-SR-GTH-q10 and DZVP-MOLOPT-SR-GTH-q12 are used for Mg2+ and Zn2+ respectively. <br></div><div><br></div>I observe a similar slowdown of the MOs localization speed when I use Na+ atoms to counterbalance the -2 charge of the system containing Zn2+.<br><br>Here a typical input file follows.<br><br> &GLOBAL<br> PRINT_LEVEL LOW<br> PROJECT_NAME MD<br> RUN_TYPE MD<br> &END GLOBAL<br> &MOTION<br> &MD<br> ENSEMBLE NVT<br> STEPS 100<br> TIMESTEP 0.5 <br> TEMPERATURE 3.0000000000000000E+02<br> TEMP_TOL 5.0000000000000000E+01<br> &THERMOSTAT<br> TYPE CSVR<br> &CSVR<br> TIMECON 2.4999999999999996E+01<br> &END CSVR<br> &END THERMOSTAT<br> &END MD<br> &END MOTION<br> &FORCE_EVAL<br> METHOD QS<br> &DFT<br> BASIS_SET_FILE_NAME BASIS_MOLOPT<br> POTENTIAL_FILE_NAME GTH_POTENTIALS<br> CHARGE -2<br> &SCF<br> MAX_SCF 100<br> EPS_SCF 4.9999999999999998E-07<br> SCF_GUESS RESTART<br> &OT T<br> MINIMIZER DIIS<br> PRECONDITIONER FULL_KINETIC<br> &END OT<br> &END SCF<br> &MGRID<br> CUTOFF 6.0000000000000000E+02<br> &END MGRID<br> &XC<br> DENSITY_CUTOFF 1.0000000000000000E-10<br> GRADIENT_CUTOFF 1.0000000000000000E-10<br> TAU_CUTOFF 1.0000000000000000E-10<br> &XC_GRID<br> XC_SMOOTH_RHO NN10<br> XC_DERIV SPLINE2_SMOOTH<br> &END XC_GRID<br> &XC_FUNCTIONAL NO_SHORTCUT<br> &BECKE88 T<br> &END BECKE88<br> &LYP T<br> &END LYP<br> &END XC_FUNCTIONAL<br> &VDW_POTENTIAL<br> &PAIR_POTENTIAL<br> R_CUTOFF 8.0000000000000000E+00<br> TYPE DFTD3(BJ)<br> PARAMETER_FILE_NAME dftd3.dat<br> REFERENCE_FUNCTIONAL BLYP<br> EPS_CN 1.0000000000000000E-02<br> CALCULATE_C9_TERM T<br> REFERENCE_C9_TERM T<br> LONG_RANGE_CORRECTION T<br> &END PAIR_POTENTIAL<br> &END VDW_POTENTIAL<br> &END XC<br><b> &LOCALIZE T<br> &PRINT<br> &TOTAL_DIPOLE ON<br> FILENAME =totdipole<br> PERIODIC T<br> &EACH<br> MD 1<br> &END EACH<br> &END TOTAL_DIPOLE<br> &END PRINT<br> &END LOCALIZE</b><br> &END DFT<br> &SUBSYS<br> &CELL<br> A 1.5460000000000001E+01 0.0000000000000000E+00 0.0000000000000000E+00<br> B 0.0000000000000000E+00 1.5460000000000001E+01 0.0000000000000000E+00<br> C 0.0000000000000000E+00 0.0000000000000000E+00 1.5460000000000001E+01<br> MULTIPLE_UNIT_CELL 1 1 1<br> &END CELL<br> &KIND O<br> BASIS_SET DZVP-MOLOPT-GTH-q6<br> POTENTIAL GTH-BLYP-q6<br> &END KIND<br> &KIND H<br> BASIS_SET DZVP-MOLOPT-GTH-q1<br> POTENTIAL GTH-BLYP-q1<br> &END KIND<br> &KIND C<br> BASIS_SET DZVP-MOLOPT-GTH-q4<br> POTENTIAL GTH-BLYP-q4<br> &END KIND<br> &KIND P<br> BASIS_SET DZVP-MOLOPT-GTH-q5<br> POTENTIAL GTH-BLYP-q5<br> &END KIND<br> &KIND Na<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q9<br> POTENTIAL GTH-BLYP-q9<br> &END KIND<br> &KIND Mg<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q10<br> POTENTIAL GTH-BLYP-q10<br> &END KIND<br> &TOPOLOGY<br> NUMBER_OF_ATOMS 384<br> MULTIPLE_UNIT_CELL 1 1 1<br> &END TOPOLOGY<br> &END SUBSYS<br> &END FORCE_EVAL<br><br>Here a piece of the <b>file.out</b> concerning the <b>localization</b> is reported<br><br> ENSEMBLE TYPE = NVT<br> STEP NUMBER = 48740<br> TIME [fs] = 24370.000000<br> CONSERVED QUANTITY [hartree] = -0.234908827385E+04<br><br> INSTANTANEOUS AVERAGES<br> CPU TIME [s] = 220.24 29.11<br> ENERGY DRIFT PER ATOM [K] = -0.274167730955E+04 -0.106732023761E+04<br> POTENTIAL ENERGY[hartree] = -0.235022491736E+04 -0.234811418791E+04<br> KINETIC ENERGY [hartree] = 0.530388799833E+00 0.547854613121E+00<br> TEMPERATURE [K] = 291.529 301.129<br> ***************************<br><br><br> Number of electrons: 1070<br> Number of occupied orbitals: 535<br> Number of molecular orbitals: 535<br><br> Number of orbital functions: 3012<br> Number of independent orbital functions: 3012<br><br> Extrapolation method: ASPC<br><br> SCF WAVEFUNCTION OPTIMIZATION<br><br> ----------------------------------- OT ---------------------------------------<br> Minimizer : DIIS : direct inversion<br> in the iterative subspace<br> using 7 DIIS vectors<br> safer DIIS on<br> Preconditioner : FULL_KINETIC : inversion of T + eS<br> Precond_solver : DEFAULT<br> stepsize : 0.15000000 energy_gap : 0.20000000<br> eps_taylor : 0.10000E-15 max_taylor : 4<br> ----------------------------------- OT ---------------------------------------<br><br> Step Update method Time Convergence Total energy Change<br> ------------------------------------------------------------------------------<br> 1 OT DIIS 0.15E+00 4.9 0.00001365 -2350.2265786077 -2.35E+03<br> 2 OT DIIS 0.15E+00 7.0 0.00000785 -2350.2266129356 -3.43E-05<br> 3 OT DIIS 0.15E+00 7.0 0.00000667 -2350.2266281036 -1.52E-05<br> 4 OT DIIS 0.15E+00 7.0 0.00000316 -2350.2266318502 -3.75E-06<br> 5 OT DIIS 0.15E+00 7.1 0.00000285 -2350.2266340790 -2.23E-06<br> 6 OT DIIS 0.15E+00 7.0 0.00000168 -2350.2266355491 -1.47E-06<br> 7 OT DIIS 0.15E+00 7.1 0.00000158 -2350.2266365271 -9.78E-07<br> 8 OT DIIS 0.15E+00 7.0 0.00000079 -2350.2266370647 -5.38E-07<br> 9 OT DIIS 0.15E+00 7.1 0.00000054 -2350.2266374235 -3.59E-07<br> 10 OT DIIS 0.15E+00 7.0 0.00000041 -2350.2266374897 -6.63E-08<br><br> * SCF run converged in 10 steps *<br><br><br> Electronic density on regular grids: -1069.9999984366 0.0000015634<br> Core density on regular grids: 1067.9999999649 -0.0000000351<br> Total charge density on r-space grids: -1.9999984716<br> Total charge density g-space grids: -1.9999984716<br><br> Overlap energy of the core charge distribution: 0.00000352123302<br> Self energy of the core charge distribution: -6058.29367128599642<br> Core Hamiltonian energy: 1758.83041225385932<br> Hartree energy: 2514.80853697306702<br> Exchange-correlation energy: -565.57191895188691<br><br> Total energy: -2350.22663748972354<br><br> LOCALIZE| The spread relative to a set of orbitals is computed<br> LOCALIZE| Orbitals to be localized: All orbitals<br> LOCALIZE| If fractional occupation, fully occupied MOs are those<br> within occupation tolerance of 0.00000001<br> LOCALIZE| Spread defined by the Berry phase operator<br> LOCALIZE| Optimal unitary transformation generated by Jacobi algorithm<br> <br> Eigenvalues of the occupied subspace spin 1<br> ---------------------------------------------<br> -2.77340522 -1.55519360 -1.55401616 -1.55312686<br> -0.84401306 -0.81554322 -0.80702571 -0.80237237<br> -0.80085752 -0.79902548 -0.79112340 -0.79067760<br> -0.78889214 -0.78844561 -0.78745096 -0.78661985<br> -0.78594483 -0.78398619 -0.78359896 -0.78223867<br> -0.78202387 -0.78089859 -0.77900446 -0.77831838<br> -0.77761721 -0.77700210 -0.77677871 -0.77654095<br> -0.77610461 -0.77529141 -0.77482833 -0.77403370<br>[.......]<br> -0.09177880 -0.09168157 -0.09118981 -0.09045276<br> -0.09027640 -0.08911508 -0.08871380 -0.08817562<br> -0.08660485 -0.08624312 -0.08399649 -0.08220911<br> -0.07894380 -0.07429071 -0.06779908<br> Fermi Energy [eV] : -1.844907<br><br> LOCALIZATION| Computing localization properties for OCCUPIED ORBITALS. Spin: 1<br> Spread Functional sum_in -w_i ln(|z_in|^2) sum_in w_i(1-|z_in|^2)<br> Initial Spread (Berry) : 203183.2008851338 34522.<a href="tel:(934)%20645-3651" value="+19346453651" rel="nofollow" target="_blank">9346453651</a><br> Localization by iterative distributed Jacobi rotation<br> Iteration Functional Tolerance Time<br> 100 1035.1444747551 0.7611E-01 0.145<br> 200 1035.1439265702 0.2374E-01 0.145<br> 300 1035.1438285431 0.2086E-01 0.145<br> 400 1035.1437772042 0.1457E-01 0.155<br> 500 1035.1437553092 0.8452E-02 0.146<br> 600 1035.1437479886 0.4565E-02 0.156<br> 700 1035.1437457665 0.2413E-02 0.144<br> 800 1035.1437451192 0.1268E-02 0.155<br> 900 1035.1437449348 0.6661E-03 0.155<br> 1000 1035.1437448830 0.3497E-03 0.156<br> 1100 1035.1437448685 0.1836E-03 0.169<br> Localization for spin 1 converged in 1195 iterations<br> Spread Functional sum_in -w_i ln(|z_in|^2) sum_in w_i(1-|z_in|^2)<br> Total Spread (Berry) : 1051.<a href="tel:(831)%20528-3360" value="+18315283360" rel="nofollow" target="_blank">8315283360</a> 1035.1437448646<br><div><br></div><div>To check the role of the localization method in such problem, I ran two single point calculations, the first using the JACOBI method and the second using the CRAZY method to compute the total dipole. The latter makes the process even slower. <br></div><div><br></div><div>I would be very grateful if any of you could give me any insight.<br></div><br>Best regards,<br>Emma Rossi</blockquote></div>
<p></p>
-- <br>
You received this message because you are subscribed to the Google Groups "cp2k" group.<br>
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com" target="_blank">cp2k+unsubscribe@googlegroups.com</a>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/a4de3df0-0d85-44ec-8b5f-138082684895n%40googlegroups.com?utm_medium=email&utm_source=footer" target="_blank">https://groups.google.com/d/msgid/cp2k/a4de3df0-0d85-44ec-8b5f-138082684895n%40googlegroups.com</a>.<br>
</blockquote></div></div>
</div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/CA%2BKefgX64Kd2HYpiHFCx0NUYw-oLNrC32dP6_kfJrvRAYfNrRQ%40mail.gmail.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/CA%2BKefgX64Kd2HYpiHFCx0NUYw-oLNrC32dP6_kfJrvRAYfNrRQ%40mail.gmail.com</a>.<br />