<div>Dear Beliz,</div><div><br /></div><div>thank you for your answer. As I said, I tried changing many different parameters in TDA-CP2K. For instance, MT Poisson solver changes the spectrum by a tiny bit, as does the TZP basis set. The parameter change affects more the higher frequency and not the low frequencies. The XC functional does affect a lot the results, but still, the difference remains huge when comparing to RTP+Fourier transform (the latter agrees with the literature, so I trust it) with the same parameters.</div><div><br /></div><div>I do not perform Gaussian calculations myself, I just compare with the literature that employs Gaussian, so I cannot check the TD vs TDA.</div><div><br /></div><div>(Just a side note that with SIESTA, I do get agreement between the linear response and real-time propagation with delta kick for the absorption spectra of the same system. So, is it the Tamm Dankoff approximation that does something weird??)<br /></div><div><br /></div><div>Natalia<br /></div><br /><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, July 10, 2023 at 4:43:45 PM UTC+2 Beliz Sertcan wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><br>Hello Natalia,<div><br></div><div>Regarding the mismatch between CP2K and Gaussian TDDFT results, once should use the TDA keyword in Gaussian instead of TD to get an exact match as CP2K employs the Tamm-Dancoff approximation. Furthermore, I would highly recommend turning on the Poisson section and setting the solver to MT instead of analytical.</div><div><br></div><div><p style="margin:0px;font-stretch:normal;font-size:13px;line-height:normal;font-family:Menlo;font-size-adjust:none;font-kerning:auto;font-variant-alternates:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-east-asian:normal;font-feature-settings:normal;color:rgb(0,0,0)"><span style="font-variant-ligatures:no-common-ligatures"> &POISSON</span></p>
<p style="margin:0px;font-stretch:normal;font-size:13px;line-height:normal;font-family:Menlo;font-size-adjust:none;font-kerning:auto;font-variant-alternates:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-east-asian:normal;font-feature-settings:normal;color:rgb(0,0,0)"><span style="font-variant-ligatures:no-common-ligatures"> PERIODIC NONE</span></p>
<p style="margin:0px;font-stretch:normal;font-size:13px;line-height:normal;font-family:Menlo;font-size-adjust:none;font-kerning:auto;font-variant-alternates:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-east-asian:normal;font-feature-settings:normal;color:rgb(0,0,0)"><span style="font-variant-ligatures:no-common-ligatures"> POISSON_SOLVER MT</span></p>
<p style="margin:0px;font-stretch:normal;font-size:13px;line-height:normal;font-family:Menlo;font-size-adjust:none;font-kerning:auto;font-variant-alternates:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-east-asian:normal;font-feature-settings:normal;color:rgb(0,0,0)"><span style="font-variant-ligatures:no-common-ligatures"> &END</span></p></div><div><br></div><div>Since you are working with a heavy element I would also consider using a bigger basis such as TZVP maybe even TZV2P. With these additions I think you will be able to match the RTP spectrum better, but I would not expect a perfect match. In my opinion what you have with the positions of the sticks is not so bad.</div><div><br></div><div>Best,</div><div>Beliz</div><div><br></div><div><br><div><div dir="auto">On Monday, 10 July 2023 at 10:55:39 UTC+2 Natalia K wrote:<br></div><blockquote style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex"><div>Dear community,</div><div><br></div><div>I am calculating the absorption spectra for a silver chain using both linear response (TDDFPT) and real-time propagation implemented in CP2K 9.1. Within the RT propagation, I apply a delta kick in all three directions and then take the Fourier transform of the dipole moment and get the average (over three directions) spectrum that is in a very good agreement with the literature. In particular, with another GGA linear-response calculation with the Gaussian code (image attached, top - my results, bottom - reference). Within the TDDFPT approach, I calculate the oscillator strength which should give the same frequencies as the real-time approach, but it doesn't. In the figure attached, the oscillator strength is plotted with impulses. I tested many different parameters but LR never agrees with RT. I also tested a simpler system, a water molecule, and got a better agreement between the two methods, but still not as perfect as here, for instance: <a href="https://nwchemgit.github.io/RT-TDDFT.html#absorption-spectrum-of-water" rel="nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://nwchemgit.github.io/RT-TDDFT.html%23absorption-spectrum-of-water&source=gmail&ust=1689161604311000&usg=AOvVaw2wL1zBICZh58QsKrGiz3vg">https://nwchemgit.github.io/RT-TDDFT.html#absorption-spectrum-of-water</a></div><div><br></div><div>I would appreciate any help or suggestion. I attach both RT and LR input files used to obtain the results on the figure.</div><div><br></div><div>Best regards,</div><div><br></div><div>Natalia<br></div></blockquote></div></div></blockquote></div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/aee1a43f-8a19-44fb-a9ac-a1dbd71d7fc6n%40googlegroups.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/aee1a43f-8a19-44fb-a9ac-a1dbd71d7fc6n%40googlegroups.com</a>.<br />