<div>Hi,</div><div><br></div><div>Thank you for valuable input! Here's a breakdown of energies for a periodic LiO2 system (where CP2K and DFTB+ disagree).<br></div><div><font size="4"><b>CP2K:</b></font></div><div><br></div><div><span style="font-family: Courier New;"> Core Hamiltonian energy: -609.45757320827579<br> Repulsive potential energy: 2.86335541921533<br> Electronic energy: -65.73940900376786<br> DFTB3 3rd order energy: 9.00274299587460<br> Dispersion energy: -2.00065978643714<br> Correction for halogen bonding: 0.00000000000000<br><br> Total energy: -665.33154358339084<br><br> outer SCF iter = 1 RMS gradient = 0.49E-06 energy = -665.3315435834<br> outer SCF loop converged in 1 iterations or 10 steps</span></div><div><span style="font-family: Courier New;"><br></span></div><div><span style="font-family: Arial;">And the same system with <font size="4"><b>DFTB+</b></font> (I don't know this is the best breakdown I can get from DFTB+? This info is from detailed.out.):</span></div><div><span style="font-family: Courier New;"><font face="Sans Serif"><br></font></span></div><div><span style="font-family: Courier New;">Fermi level: -0.1574062769 H -4.2832 eV<br>Band energy: -254.9890864567 H -6938.6061 eV<br>TS: 0.0000000000 H 0.0000 eV<br>Band free energy (E-TS): -254.9890864567 H -6938.6061 eV<br>Extrapolated E(0K): -254.9890864567 H -6938.6061 eV<br>Input / Output electrons (q): 864.0000000000 864.0000000000<br> <br>Energy H0: -610.3586854777 H -16608.7049 eV<br>Energy SCC: 13.1915555608 H 358.9605 eV<br>Total Electronic energy: -597.1671299169 H -16249.7444 eV<br>Repulsive energy: 0.0000000000 H 0.0000 eV<br>Total energy: -597.1671299169 H -16249.7444 eV<br>Extrapolated to 0: -597.1671299169 H -16249.7444 eV<br>Total Mermin free energy: -597.1671299169 H -16249.7444 eV<br>Force related energy: -597.1671299169 H -16249.7444 eV</span></div><div><br></div><div>----------------------------------------------------------------------------------------------------------------</div><div>For reference, here are the equivalent breakdowns for the LiF molecule, where the total energies <i>do </i>match quite well.</div><div><font size="4"><b>CP2K:</b></font><br></div><div><span style="font-family: Courier New;"><br> Core Hamiltonian energy: -5.57594122418510<br> Repulsive potential energy: 0.00036401843654<br> Electronic energy: 0.08477836575096<br> DFTB3 3rd order energy: -0.00385103760005<br> Dispersion energy: -0.00008325087778<br> Correction for halogen bonding: 0.00000000000000<br><br> Total energy: -5.49473312847544<br><br> outer SCF iter = 1 RMS gradient = 0.12E-06 energy = -5.4947331285<br> outer SCF loop converged in 1 iterations or 25 steps</span></div><div><font size="4"><span style="font-family: Courier New;"><br></span></font></div><div><span style="font-family: Courier New;"><span style="font-family: Arial;"><b><font size="4">DFTB+</font></b></span><br></span></div><div><span style="font-family: Courier New;">Fermi level: -0.3434874008 H -9.3468 eV<br>Band energy: -3.7493389034 H -102.0247 eV<br>TS: 0.0000000000 H 0.0000 eV<br>Band free energy (E-TS): -3.7493389034 H -102.0247 eV<br>Extrapolated E(0K): -3.7493389034 H -102.0247 eV<br>Input / Output electrons (q): 8.0000000444 8.0000000000<br> <br>Energy H0: -5.5743451431 H -151.6856 eV<br>Energy SCC: 0.0807122067 H 2.1963 eV<br>Total Electronic energy: -5.4936329365 H -149.4894 eV<br>Repulsive energy: 0.0000000000 H 0.0000 eV<br>Total energy: -5.4936329365 H -149.4894 eV<br>Extrapolated to 0: -5.4936329365 H -149.4894 eV<br>Total Mermin free energy: -5.4936329365 H -149.4894 eV<br>Force related energy: -5.4936329365 H -149.4894 eV</span></div><div><br></div><div>----------------------------------------------------------------------------------------------------------------</div><div><br></div><div>> I recently run variable-cell optimization of various molecular crystals
and I found xTB@CP2K ultra sensitive to EPS_DEFAULT. Tested from 1e-5 to
1e-24 (with EPS_SCF 1e-8), and no convergence happened. <br></div><div><br></div><div>Thank you for sharing this info! I tried a series of calculations with LiO2 using varying values of EPS_DEFAULT (using default EPS_SCF) and found the same effect; no convergence with EPS_DEFAULT (or perhaps unreasonably slow convergence). I attach a figure showing these results, including the energy broken down into the different parts as specified in the CP2K output. Note the energy scale, the changes with EPS_DEFAULT are really quite substantial. In the LiF (non-PBC) case, the corresponding curves look completely flat on the same scale. I don't know what to make of this result, but perhaps someone else does?</div><div><br></div><div>Magnus</div><div><br></div><img src="data:application/pdf;base64,JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUiAvTWVkaWFCb3ggWyAwIDAgNDYwLjggMzQ1LjYgXQovUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIgL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCniczVrbbhy5EX3vr+Cj9KA2WbwU+WivLwsjAeK1NnnIBoGgnXVk6GJb9hr5+5xi9wyLLWnc8lrOGpAxc4ZdXSzyVJ1i96Onm9/PTjc/vXhifng9PGrfTq8HZ97i742x5i3+PhtnXuDvzWDx7WIIyY4Zn87nTz7EMeGb3X36zzD8Njx6jEuuMe7FENPofDSBxhSCWIh2++W8fvE+wND5duD262yHJjtv4AP8wS+fxaogQ0ljcCmF3Iw3yJfR1VsMTzCdz8N7/G/NkYWdTNMgZmJvKI1M5Cia04vhybHMcyycYgJy/Ovw6Lkzzprj34YDd2iO3w5p9Im8DSlzhEUMObD1B0ejJ0+BnPzix0zZNRtcTfg6Mowh+uS8DJhNcP3h2fHwHre3lo2Ee/oEu5msF1uIzHzj0wsDq0dPN29P/v7p9cnl9dHF2eWna/P0yrwaXg01UIMLbnQcrA8tQgrbEyJHPI+yxZY/SYz8g8Qox7F4F0iFaAftixC7aZANMcTvGyGaI+RTcjVCfjZRHiJCcHNMOWcY2YVIYXtiRC5No1J2mf4/Mbqxi+KDxIjjGEJyxasYNWxfjJKbRzkE6U8SI/cQMfJkR1wZVbpu0J4IeZvqIC4gGpjGNyNkU7APEiH3x/I1jJbJ/LoIpTCWZEtKKkQN2xejaKdREenafd9ddGeMHiRfoyCN7LKPKmErbF+MCs+jCIX/+8boGyfmLseWEYHH1c6PpCZk2gzs5O8/zcGzv73+99Nnzw9NQf7GyIPHP//lEFfyiM/Hh+Zf5viluLmN9qzJmMccXQ4FwY6IegfdmtUwlegxEQ6jjaEwBJfjG47l0XMulbpbD2m0zY0aLbcN1vRh1S6Z/ZaJccKicXNcYXs9d96DUvCaLPuyxnU3xm/oOnZr4kDQFs31hu13vWAXMvtUSk60zvVvGHWK2E45huCb6wrb6zpFP3LOMcHDHNa4br9l1L3jMWDVg2uuK+zWtCK0q8wHARFxpJDs7M29bpXHVjPt/SBmjsSgyyNzzUBIYsLmfVS+3HwAdaHT5eYHb/5rfjn48eTRyceri18OO/umb8G87I6EUBcaXUzmw8b8w1waMi8NdrD0V6Mj/ICtI5luDGn+x4gV25gzIYcW89ML03eOQ/Bgb2EoYsMF5PHEEkdo5LFYRmwMoz9DEiVp/VrSRpJwCWJRGOlLHmHd2mRYlBFBIAmcefRe6pvAaGJykWbTw6CLkj1NKjCdUYEEbkUz5ZFCsLHCsrkYmaiYhCQQss9SKjwCEzNJMwiYsqckBPPejb4gSjASkaMRAfG7aRagNkCXVBuYjUU34GEjICGTL+I2gbGZQs5JYEcliAm4KTsrBpP86FwpURpewghC2JGYElamYFkrDKdtwkpAKDKWhMQ3QheXOTtMq+pHkgHnWpZLdx5ycBJTqRGhlJAEjQUprRq2YJOzzgWBsW5BUMkxDikPixFRSyWJiOXWEwG12D4kE0GLiDBidDBRti6mJ3F2mFaMtcpGYWy0tpoGoXzyPjuDbJCxKJVSqiMVGFui5jcEa0QKwHQEDrHI+gAWjpToQzVCmESdIhg3JhsxSdntjLsnqUztPABoyIXrZDAXWW3kB6BYb9RPoFKqPAZEEzFX8iLHQfjX4NzLuzlhOk58kHOKnkHDvtFzIpEE0MhTG8odgaz3oeawv1qkrN3wI4eo5eJDlXzmCBEPliJWiGnFcBop2YxV9Jj7muGMbSp5N7oVw+3orfUpRpTZFcOxsUU4kpcdv2Y4dEfEattUVjkTSkwJBEYntmp4iiAlbrFmONgH4xa7aFUgsf7Z28xh7XC4AkbIXNf5bpFyHJZ1zTKh6ltkBaTYwLcNJ5Jym+bWFNbRzGAb+JzWLBOc8Qm7N02FfMWeIWtRaDOvW6aIbBMz9uS6yJDsgeIirwwkrAfmTGvYJJFBpKCH/a2BvDEcOwBZOKFnWMkmtqWgEqxzJtgQUBXtOnYgl0qCgkfrXEePURLTOuMeH1Dlw9zTfHGRUJGjqMR1OwafIorcWmKjrgf2ML9yx0i+y4zprp0qZkqlIwcUprm3AHNSYUq2UB/Yrygg0kJZRB1ldK/qyugFcdlCdEmvB81VFYJSXcWNBLlaK7ZSXeIU7lyrqlJdgOFMrF2TUl1FKoMNOfWqCzO0MaZaV5XqAoyCDXXfqy7AUEPWU6+6AHMkuYtWXUDhdIncq64i8golPfaqCzAFpM/SyS6gyKuTkmqqCyhkDwSFVl0AIahyCr3qAlzQYTH3qqtELHR2hTrVBZQshIXvVRdgHyz872UX4JigVHInuwTFatX5KdkFWHyvbbiSXYC52FDvqGRXEWETLZdedgns2fNCdkE8YY2nBzVKdglckGB8L7sAE7661MkuQbN11ZEmu4BC1WD1O9lVanPgt7LrK4gD3QV9PHFlkBMODtGCSKH7ZT+HcH9EMUb2PYsU3tGowxWPerwRqccbk3pcnfp1eONSjzcy9XhjU4+3g9cObnzqcEWoHt8xqocbp3p8S6oebazqcfWMocN3vOrhRqwOV8zq8faUp4Mbt3q8kavHG7t6XD1n6/DGrx5vBOvxxrAOV086Ndw41sGNZB38tSzLtTKhv/FgGSJQgnOcpDGau56ANmE/y6zk1YhmqGcZKpKEx/nQswxlFeM52dSzjOCsgx6tqUSxTJzniO3fkwwXoVvmMDX4jWSUcz2AsrEnmeCOmafxjWSEO6F7nZpMRTJC/BPU8nQ4sSMZZRQctMc18SqSoWuQJwSocj3JBPfIXFOfviMZWiQso801IyuSIcOib0aLEDTJBCX4RQuSEVpLNM1pWbsEl8JfW+RGMmJsTGhJ7jkmsI1o2BYcIwQbUtItOCYwR0t+cWwguGgodj3H5OEZQl1PihTFBMbeiFOpahQTHIme7YJi2ImIHcK/oJjgHitQT1gUxbC2I3S5LX0VE9iLO6GjmMCIRQwdw+D/mORRFf8BhsVZ/aUi5wd2yzc5P6hcC2y/VMdIap5D77uoY/gYMjbqoowBTkHGLMoY8Ix9VsqijAkesFSLYzjBoQ5ylS+6jJF0m7lMAlKVMcEhnafxqowJnqQPX5Qx4M7b6XhNlTGBpYlJizImeLHIVIsyBhyarB45qiomaISMcYsqJjisxE4aCgo2Zl6cyFWcsPfLoooJHiKl3FcxgeN8NK6rmOBYbXKLKgY82FTquaiqYgI7qNewqGKCIwnUk0ddxQT3yALLKiZ4jJM61lWs4inahUqseCqWFjKx4szTRtNVTHCsZAl9FQMcrUt1AVUVqzDIsqhiApN1Ne1/NcfmpoozOOb9pA8JP8z1LPCXipiTpJYkfS+k4g5fSEWFd1JR41oqalxLRY1rqahxLRU1rqWixrVU1LiSihrWUlHhnVTUuJKKGtZSUeNNKmpUS0WNa6mocSUVNaylosI7qahxJRU1rKWixrVU1LiWihrXUlHjWipqXEtFjWupqHAtFRWspaKCtVRU8Ewy4Y/dvYnXU2P5pt/ihT5YUO/+XXTv/uG3ve8Jtt+nK25c/eixn14UfCkvK86H8Hl+dXEg5tFOj9XkBCJJqwsTyLgKAFUDVEH9p/EQpusyYiWvidWvcfvr6SAAdA20FieazAiAPcBWnuwoq8jC22Fyc/X1tPmo0PP6EhFTkWdjCq9yZxq7u43CSFuN25nHNlGF7ual7qQmf1vkTuXdzCfbdzNrRsWO+MKzQ3P3s8MBe6eKz+o9YZ2Dz3WFKN9EJcXchj7wgxrti+89zPLAt2ic6usVDiVRwCAHN/hY5MTQy4twFOQYFV2YrBBgNCRB9CTwCJHhp7I1301OieTpo8Z285brFVp8CXm61c4mYyaUXOwcyHIYKlJfDDRn0QWRtDumm1fZzavFoCgPsliTw/V+LFokZJLUm4WPKK554QJgOT+XBlD5C/TGzDSmPEg3o6VttrgqB/QiKGfbgul5+Vti4JsHlRG2vjY9vZzcvcC2ZTZJPpuuuPO5/vGhcQkJPpqDq48n52azfM6vn+3fdWZs9p8ZN7Y5EWnUUW2GNM920JZk2xS7b7L4UHjfGww/XGFiJBUd89qYH08uzs4/Xl2enVyunXR3qneP877d/J0cK1grYleFQKEqCh16j0DI2zh+uu7uWPx0aIKvi7559+n8+uz3jXl39XFz+fFs/RbQ5zLmHucyLRoZWpnyIhg7UMdCgfcJBWcsUt7/itr55vSj2hjYEKfrI9D6ZnOPvrlFIMmrBrM+aCFoqI6BRu8TBMjDMl13dxSePlfTPX4Cvavn/6u56r5uPtwaoeHWCO26HrO+62kBgoblHPrwbDEdnIbdJzShjCRX7QnM2fW7zYfrs6svJIlXw/8ABPNrMQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjMyNjQKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MSA+PgpzdHJlYW0KeJw1jLsNwDAIRHumuBH4OID3iaIU9v5tiC0X3D3pifNsYGSdhyO04xaypnBTTFJOqHcMaqU3HTvoJc39NMl6Lhr0D3H1FbabA5JRJJGHRJfLlWflX3w+DG8cYgplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjY0ID4+CnN0cmVhbQp4nD1SuZEDMQzLtwqWwF9SPb65cWD3nx7APTsxMUsRAEH3blE5Gz9tJcuP/NhlZ0nklvegbfK6ouoGqZsgc8lxyRVilvK4EiQWLWUm1meqg/JxDWoVvvATMxPTIUnEEnJSjyKsj6+D1/Uc3F836fwaGR90bFB6S5KroFTDvnK0EjuW6l2D7IOmm9LqM9Ou7ICl8Yas1KROfx31vyMswqTeSEUHIRa/08sdsiykHNTbuX4D4V3tglhPrTzsEGneVnpLFczmzARMGW07rIC1WWPCVAnwFs0h1FqIzBc6rYj55NzRwTRVeRoiw1KFg+09ozVc6BoSS8P5ScYE5r/w+qzIbX//AHBoZ7oKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzNSA+PgpzdHJlYW0KeJw1UUluADEIu+cV/kClsCfvmarqof3/tYZRLwMD2Ngk78FGJD7EkO4oV3zK6jTL8DtZ5MXPSuHkvYgKpCrCCmkHz3JWMwyeG5kClzPxWWY+mRY7FlBNxHF25DSDQYhpXEfL6TDTPOgJuT4YcWOnWa5iSOvdUr2+1/KfKspH1t0st07Z1ErdomfsSVx2Xk9taV8YdRQ3BZEOHzu8B/ki5iwuOpFu9psph5WkITgtgB+JoVTPDq8RJn5mJHjKnk7vozS89kHT9b17QUduJmQqt1BGKp6sNMaMofqNaCap7/+BnvW9vv4AQ01UuQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTY0ID4+CnN0cmVhbQp4nD2QwRFDIQhE71axJYCAQD3JZHL4v/9rQJNcZB1g96k7gZBRhzPDZ+LJg9OxNHBvFYxrCK8j9AhNApPAxMGaeAwLAadhkWMu31WWVaeVrpqNnte9Y0HVaZc1DW3agfKtjz/CNd6j8BrsHkIHsSh0bmVaC5lYPGucO8yjzOd+Ttt3PRitptSsN3LZ1z06y9RQXlr7hM5otP0n1y+7MV4fhRQ5CAplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODEgPj4Kc3RyZWFtCnicTc27DcAgDATQnik8AuD/PlGUItm/jQ0RobGfdCedYIcKbnFYDLQ7HK341FOYfegeEpJQc91EWDMl2oSkX/rLMMOYWMi2rzdXrnK+FtwciwplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzYgPj4Kc3RyZWFtCnicMzU3VTBQsLQAEqaG5grmRpYKKYZcQD6IlcsFE8sBs8xMzIAsQ0tklomxIZBlYmGGxDI2sYDKIlgGQBpsTQ7M9ByuDK40ADUXGQUKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc5ID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcwID4+CnN0cmVhbQp4nD2QSxLDIAxD95xCRwD/gPO00+mC3H9by5l0gxRjyy9EV3TslYfHxpSN92hjT4QtXOV0Gk5TGY+Lu2ZdoMthMtNvvJq5wFRhkdXsovoYvKHzrGaHr1UzMYQ3mRIaYCp3cg/19ac47duSkGxXYdCdGqSzMMyR/D0QU3PQc4iR/CNfcmth0JnmFxctqxmtZUzR7GGqbC0M6o1Bd8r11Hqu8zAR7/MD30E+ZAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjMyID4+CnN0cmVhbQp4nD2QS3IEIQxD95xCRwB/4TydSs2i5/7byO6ZbJCqwPITcRwTZ/OICKQc/KxhZlATvIeFQ9VgO6DrwGdATuAaLnQpcKPahHN8ncObCpq4h8dstUisneVMIeowJkls6EnINs5ocuOc3KpU3kxrvcbim3J3u8pr2pbCvYfK+jjjVDmrKmuRNhGZRWsbwUYe7LDPo6toy1kq3DeMTV0TlcObxe5Z3cniiu+vXOPVLMHM98O3vxwfV93oKsfYyoTZUpPm0jn1r5bR+nC0i4V64Ud7JkhwdasgVaXWztpTev1T3CT6/QP0wVcdCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDEgPj4Kc3RyZWFtCnicNVI70ptBCOu/U+gCnlney3mcyaT4c/82AjsVLLBCAtICB5l4iSGqUa74JU8wXifwd708jZ/Hu5Ba8FSkH7g2beP9WLMmCpZGLIXZx74fJeR4avwbAj0XacKMTEYOJANxv9bnz3qTKYffgDRtTh8lSQ+iBbtbw44vCzJIelLDkp38sK4FVhehCXNjTSQjp1am5vnYM1zGE2MkqJoFJOkT96mCEWnGY+esJQ8yHE/14sWvt/Fa5jH1sqpAxjbBHGwnM+EURQTiF5QkN3EXTR3F0cxYc7vQUFLkvruHk5Ne95eTqMArIZzFWsIxQ09Z5mSnQQlUrZwAM6zXvjBO00YJd2q6vSv29fPMJIzbHHZWSqbBOQ7uZZM5gmSvOyZswuMQ8949gpGYN7+LLYIrlznXZPqxH0Ub6YPi+pyrKbMVJfxDlTyx4hr/n9/7+fP8/geMKH4jCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NiA+PgpzdHJlYW0KeJwzMzRUMFDQNQISZoYmCuZGlgophlxAPoiVywUTywGzzEzMgCxjU1MklgGQNjI1g9MQGaABcAZEfwZXGgBSaxTACmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTYgPj4Kc3RyZWFtCnicNY9LDsMwCET3PsVcoBJfQ86Tquoivf+2YCeSEU/2zBhCBYQMvFgxzRFy4M2jbpp+g3MuuhZJ1U2UVQR2hkiCOXAO8YlUKAnmhFbVOYdVQIGF96uT3nJXXgFuO3D1bEfT/vYZapOE3cSRmFJ+Cnjd+tE2iYqGea6FeoDuNVgpmoSsBeyxDcy0EmrfDqzWyvPZ/xrf8fkDYBM2+AplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU4ID4+CnN0cmVhbQp4nEWRS3IEIAhE956CI4D85DyTSmUxuf82Dc5kNnaXqP2ESiOmEiznFHkwfcnyzWS26Xc5VjsbBRRFKJjJVeixAqs7U8SZa4lq62Nl5LjTOwbFG85dOalkcaOMdVR1KnBMz5X1Ud35dlmUfUcOZQrYrHMcbODKbcMYJ0abre4O94kgTydTR8XtINnwByeNfZWrK3CdbPbRSzAOBP1CE5jki0DrDIHGzVP05BLs4+N254Fgb3kRSNkQyJEhGB2Cdp1c/+LW+b3/cYY7z7UZrhzv4neY1nbHX2KSFXMBi9wpqOdrLlrXGTrekzPH5Kb7hs65YJe7g0zv+T/Wz/r+Ax4pZvoKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyMiA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTAgPj4Kc3RyZWFtCnicPU85DsMwDNv9Cn4ggHVYtt6TIuiQ/n+t6KAdBBGgeMiyo2MFDjGBSccciZe0H/w0jUAsg5ojekLFMCxwNkmBh0FWSVc+W5xMIbUFXkj41hQ8G01kgp7HiB24k8noA+9SW7F16AHtEFUkXbMMY7GtunA9YQQ1xXoV5vUwY4mSR59VS+sBBRP40vl/7m7vdn0BYMUwXQplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUxID4+CnN0cmVhbQp4nDWPyw3DMAxD75qCCwTQz7I8T4qgh3T/ayWnBQyYMMkn2RaDkYxDTGDsmGPhJVRPrT4kI7e6STkQqVA3BE9oTAwznKRL4JXpvmU8t3g5rdQFnZDI3VltNEQZzTyGo6fsFU76L3OTqJUZZQ7IrFPdTsjKghWYF9Ry38+4rXKhEx62K8OiO8WIcpsZafj976Q3XV/ceDDVCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1MSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjAgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzNCA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzAgPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC6MrjSAJiaEwMKZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU0ID4+CnN0cmVhbQp4nDM2NlcwAEJdSyMFYyDb3MhSIcWQy8jUBMzM5YIJ5nBZGINV5XAZQGmYohyuDK40APuEDh8KZW5kc3RyZWFtCmVuZG9iago1MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago1NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjU1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQwID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTEgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjU4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzUwUDBQ0LVU0DUyNlUwNQSyDc1MFVIMueDsXAgTJJ/DBVMJYYGkcxAqc7gyuNIAc1EPjwplbmRzdHJlYW0KZW5kb2JqCjU5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjYwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQxID4+CnN0cmVhbQp4nD2PwQ7DMAhD7/kK/0Ck2CmhfE+naofu/68jS7sLegJjjIXQ0BuqmsOGYJvjxdIlVGv4FMVAJTfImWAOpaTSHUeRemI4GFwetBuO4rHo+hG7kmZ90MZCuiVogHusU2ncpnETxB01Beop6pyjvBC5n6ln2DSS3TSzknO4Db97z1PX/6ervMv5Bb13Lv4KZW5kc3RyZWFtCmVuZG9iago2MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNiAwIG9iago8PCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9DaGFyUHJvY3MgMTcgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIC9zbGFzaCAvemVybyAvb25lIC90d28KL3RocmVlIDUzIC9maXZlIDU1IC9zZXZlbiA1NyAvbmluZSA2NSAvQSAvQiAvQyAvRCAvRSAvRiA3MiAvSCA3NiAvTCA4MCAvUAo4MiAvUiAvUyAvVCAvVSA5NSAvdW5kZXJzY29yZSA5NyAvYSA5OSAvYyAvZCAvZSAxMDMgL2cgMTA1IC9pIDEwOCAvbCAvbSAvbgovbyAvcCAxMTQgL3IgL3MgL3QgL3UgL3YgMTIxIC95IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxNSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTQgMCBSID4+CmVuZG9iagoxNSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNyAwIG9iago8PCAvQSAxOCAwIFIgL0IgMTkgMCBSIC9DIDIwIDAgUiAvRCAyMSAwIFIgL0UgMjIgMCBSIC9GIDIzIDAgUiAvSCAyNCAwIFIKL0wgMjUgMCBSIC9QIDI2IDAgUiAvUiAyNyAwIFIgL1MgMjggMCBSIC9UIDI5IDAgUiAvVSAzMCAwIFIgL2EgMzEgMCBSCi9jIDMyIDAgUiAvZCAzMyAwIFIgL2UgMzQgMCBSIC9maXZlIDM1IDAgUiAvZyAzNiAwIFIgL2kgMzcgMCBSIC9sIDM4IDAgUgovbSAzOSAwIFIgL24gNDEgMCBSIC9uaW5lIDQyIDAgUiAvbyA0MyAwIFIgL29uZSA0NCAwIFIgL3AgNDUgMCBSCi9wYXJlbmxlZnQgNDYgMCBSIC9wYXJlbnJpZ2h0IDQ3IDAgUiAvcGVyaW9kIDQ4IDAgUiAvciA0OSAwIFIgL3MgNTAgMCBSCi9zZXZlbiA1MSAwIFIgL3NsYXNoIDUyIDAgUiAvc3BhY2UgNTMgMCBSIC90IDU0IDAgUiAvdGhyZWUgNTUgMCBSCi90d28gNTYgMCBSIC91IDU3IDAgUiAvdW5kZXJzY29yZSA1OCAwIFIgL3YgNTkgMCBSIC95IDYwIDAgUiAvemVybyA2MSAwIFIKPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE2IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTMgPDwgL0NBIDAuOCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgNDAgMCBSIC9NMCAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CQm94IFsgLTggLTggOCA4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNjIgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIyMDkwNTE1MDQwNyswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjUuMSkgPj4KZW5kb2JqCnhyZWYKMCA2MwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNzI2OCAwMDAwMCBuIAowMDAwMDE2NzM4IDAwMDAwIG4gCjAwMDAwMTY3NzAgMDAwMDAgbiAKMDAwMDAxNjkxMiAwMDAwMCBuIAowMDAwMDE2OTMzIDAwMDAwIG4gCjAwMDAwMTY5NTQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzM0IDAwMDAwIG4gCjAwMDAwMDM2OTQgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzNjczIDAwMDAwIG4gCjAwMDAwMTcwMTQgMDAwMDAgbiAKMDAwMDAxNTE3MyAwMDAwMCBuIAowMDAwMDE0OTY2IDAwMDAwIG4gCjAwMDAwMTQ0MDggMDAwMDAgbiAKMDAwMDAxNjIyNiAwMDAwMCBuIAowMDAwMDAzNzE0IDAwMDAwIG4gCjAwMDAwMDM4NzcgMDAwMDAgbiAKMDAwMDAwNDIxNCAwMDAwMCBuIAowMDAwMDA0NTIyIDAwMDAwIG4gCjAwMDAwMDQ3NTkgMDAwMDAgbiAKMDAwMDAwNDkxMiAwMDAwMCBuIAowMDAwMDA1MDYwIDAwMDAwIG4gCjAwMDAwMDUyMTEgMDAwMDAgbiAKMDAwMDAwNTM0NCAwMDAwMCBuIAowMDAwMDA1NTg3IDAwMDAwIG4gCjAwMDAwMDU4OTIgMDAwMDAgbiAKMDAwMDAwNjMwNiAwMDAwMCBuIAowMDAwMDA2NDQ0IDAwMDAwIG4gCjAwMDAwMDY2NzMgMDAwMDAgbiAKMDAwMDAwNzA1MyAwMDAwMCBuIAowMDAwMDA3MzU4IDAwMDAwIG4gCjAwMDAwMDc2NjIgMDAwMDAgbiAKMDAwMDAwNzk4NCAwMDAwMCBuIAowMDAwMDA4MzA2IDAwMDAwIG4gCjAwMDAwMDg3MjAgMDAwMDAgbiAKMDAwMDAwODg2NCAwMDAwMCBuIAowMDAwMDA4OTgzIDAwMDAwIG4gCjAwMDAwMDkzMTQgMDAwMDAgbiAKMDAwMDAwOTQ4NiAwMDAwMCBuIAowMDAwMDA5NzIyIDAwMDAwIG4gCjAwMDAwMTAxMTcgMDAwMDAgbiAKMDAwMDAxMDQwOCAwMDAwMCBuIAowMDAwMDEwNTYzIDAwMDAwIG4gCjAwMDAwMTA4NzUgMDAwMDAgbiAKMDAwMDAxMTA5OCAwMDAwMCBuIAowMDAwMDExMzIyIDAwMDAwIG4gCjAwMDAwMTE0NDUgMDAwMDAgbiAKMDAwMDAxMTY3OCAwMDAwMCBuIAowMDAwMDEyMDg1IDAwMDAwIG4gCjAwMDAwMTIyMjcgMDAwMDAgbiAKMDAwMDAxMjM1MyAwMDAwMCBuIAowMDAwMDEyNDQzIDAwMDAwIG4gCjAwMDAwMTI2NDkgMDAwMDAgbiAKMDAwMDAxMzA2MiAwMDAwMCBuIAowMDAwMDEzMzg2IDAwMDAwIG4gCjAwMDAwMTM2MzMgMDAwMDAgbiAKMDAwMDAxMzc1OSAwMDAwMCBuIAowMDAwMDEzOTA2IDAwMDAwIG4gCjAwMDAwMTQxMjAgMDAwMDAgbiAKMDAwMDAxNzMyOCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDYyIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA2MyA+PgpzdGFydHhyZWYKMTc0ODUKJSVFT0YK" alt=""><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, September 5, 2022 at 12:18:26 PM UTC+2 jazz...@gmail.com wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><div dir="auto">I recently run variable-cell optimization of various molecular crystals and I found xTB@CP2K ultra sensitive to EPS_DEFAULT. Tested from 1e-5 to 1e-24 (with EPS_SCF 1e-8), and no convergence happened. I just ended up with EPS_DEFAULT 1e-10 as a "gut" choice. Also, the behavior of xTB@CP2K is doutfull with MD even at ambiant conditions, where the converged volume is barely larget than at 0K. Depending on EPS_DEFAULT, it can even be smaller at ambient T. Weird. The behavior of DFTB2@CP2K is far better.<div dir="auto"><br></div><div dir="auto">I found that DFTB+ has other issues. xTB@DFTB+ has no convergence issue, but the recommended variable-cell optimization algorithm has flaws. The unit cell and a supercell does NOT always end up with related lattice parameters. The main issue is that some 90° angles are not preserved with DFTB+ whereas CP2K does (with no symmetry enforced, obviously). Some inconsistencies appears in DFTB+ with a lattice dimensions < 10 angstroms in the unit cell versus > 10 angstroms in the supercell. A proper tight mesh of k-points does not improve. So I'm afraid that xTB@DFTB+ (or DFTB+, actually) cannot be a relevant choice for crystal structure predictions, for instance.</div><div dir="auto"><br></div><div dir="auto">xTB may be unreliable with CP2K and DFTB+, but for the different reasons above. You can check these weird behaviors with your own crystals of interest.</div><div dir="auto"><br></div><div dir="auto">Xavier</div><div dir="auto"><br></div><div dir="auto"><br></div></div><br><div class="gmail_quote"></div><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Le lun. 5 sept. 2022, 3:59 AM, Jürg Hutter <<a href data-email-masked rel="nofollow">hut...@chem.uzh.ch</a>> a écrit :<br></div></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi<br>
<br>
thank you for testing. Could you send a break down of the energies for the LiF molecule for<br>
the two codes? That might help to recognize the source of the difference.<br>
<br>
regards<br>
<br>
JH<br>
<br>
________________________________________<br>
From: <a href rel="noreferrer nofollow" data-email-masked>cp...@googlegroups.com</a> <<a href rel="noreferrer nofollow" data-email-masked>cp...@googlegroups.com</a>> on behalf of Magnus Rahm <<a href rel="noreferrer nofollow" data-email-masked>mag...@compulartech.com</a>><br>
Sent: Monday, September 5, 2022 8:40 AM<br>
To: cp2k<br>
Subject: [CP2K:17599] Re: Large discrepancy in xTB results from CP2K vs DFTB+<br>
<br>
For the record, the problem is the same in CP2K version 2022.1.<br>
<br>
On Thursday, September 1, 2022 at 12:48:35 PM UTC+2 Magnus Rahm wrote:<br>
Dear all,<br>
<br>
I want to use CP2K (version 8.2, trying to get a more recent version compiled) together with xTB for a crystal containing Li and O. I get strange results already for a simple LiO2 crystal:<br>
<br>
* There is a very large discrepancy compared to DFTB+ (version 22.1).<br>
* Mulliken charges tend to be large, meaning that CHECK_ATOMIC_CHARGES stops the SCF. If I turn it off, the system tends to converge systematically to values just outside the "chemical range". Mulliken charges obtained by DFTB+ are significantly smaller (and within "chemical range").<br>
* The energy-volume curve looks strange and very different from DFTB+.<br>
<br>
I have tried converging with respect to system size and the EWALD / ALPHA and GMAX parameters, but they have only a marginal impact. I have tried similar calculations for a number of periodic systems. Sometimes I get agreement, sometimes not. I also tried calculations for CO and NO molecules which agree perfectly between CP2K and DFTB+, whereas an artificial LiF molecule does not.<br>
<br>
A perhaps related issue was reported in <a href="https://groups.google.com/g/cp2k/c/oFwgGcQuySs" rel="noreferrer noreferrer nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/g/cp2k/c/oFwgGcQuySs&source=gmail&ust=1662466705157000&usg=AOvVaw1XK-rMVlVet2VFO3SU8oTc">https://groups.google.com/g/cp2k/c/oFwgGcQuySs</a> but the solutions suggested there did not solve my problem.<br>
<br>
I attach input scripts for CP2K and DFTB+, as well as a figure showing the E-V curve for LiO2 obtained with CP2K and DFTB+. I'm new to CP2K, DFTB+ and xTB so I suspect I have made some simple mistake, and any advice is appreciated.<br>
<br>
Kind regards,<br>
Magnus Rahm<br>
<br>
<br>
<br>
<br>
<br>
<br>
--<br>
You received this message because you are subscribed to the Google Groups "cp2k" group.<br>
To unsubscribe from this group and stop receiving emails from it, send an email to <a href rel="noreferrer nofollow" data-email-masked>cp2k+uns...@googlegroups.com</a><mailto:<a href rel="noreferrer nofollow" data-email-masked>cp2k+uns...@googlegroups.com</a>>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/c51e70a2-7f7a-4887-8ada-971d840a1b13n%40googlegroups.com" rel="noreferrer noreferrer nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/d/msgid/cp2k/c51e70a2-7f7a-4887-8ada-971d840a1b13n%2540googlegroups.com&source=gmail&ust=1662466705157000&usg=AOvVaw1rdM3LvTkRigpuJTojpcj3">https://groups.google.com/d/msgid/cp2k/c51e70a2-7f7a-4887-8ada-971d840a1b13n%40googlegroups.com</a><<a href="https://groups.google.com/d/msgid/cp2k/c51e70a2-7f7a-4887-8ada-971d840a1b13n%40googlegroups.com?utm_medium=email&utm_source=footer" rel="noreferrer noreferrer nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/d/msgid/cp2k/c51e70a2-7f7a-4887-8ada-971d840a1b13n%2540googlegroups.com?utm_medium%3Demail%26utm_source%3Dfooter&source=gmail&ust=1662466705158000&usg=AOvVaw1-j2h2kW0clhD3lkBuhG9s">https://groups.google.com/d/msgid/cp2k/c51e70a2-7f7a-4887-8ada-971d840a1b13n%40googlegroups.com?utm_medium=email&utm_source=footer</a>>.<br>
<br>
-- <br>
You received this message because you are subscribed to the Google Groups "cp2k" group.<br></blockquote></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
To unsubscribe from this group and stop receiving emails from it, send an email to <a href rel="noreferrer nofollow" data-email-masked>cp2k+uns...@googlegroups.com</a>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/ZR0P278MB075983A13AA78F53FFB422559F7F9%40ZR0P278MB0759.CHEP278.PROD.OUTLOOK.COM" rel="noreferrer noreferrer nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/d/msgid/cp2k/ZR0P278MB075983A13AA78F53FFB422559F7F9%2540ZR0P278MB0759.CHEP278.PROD.OUTLOOK.COM&source=gmail&ust=1662466705158000&usg=AOvVaw2VT7S4ewxjr8-ROWnYP7UE">https://groups.google.com/d/msgid/cp2k/ZR0P278MB075983A13AA78F53FFB422559F7F9%40ZR0P278MB0759.CHEP278.PROD.OUTLOOK.COM</a>.<br>
</blockquote></div>
</blockquote></div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/7d455fce-a22e-44f1-ac48-18495f9553a5n%40googlegroups.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/7d455fce-a22e-44f1-ac48-18495f9553a5n%40googlegroups.com</a>.<br />