The output from the production one (the global run is large show I include the end here:<div><br></div><div><font face="Courier New">MD| ***************************************************************************<br> MD| Step number                                                            5104<br> MD| Time [fs]                                                       2552.000000<br> MD| Conserved quantity [hartree]                            -0.262582505304E+04<br> MD| ---------------------------------------------------------------------------<br> MD|                                          Instantaneous             Averages<br> MD| CPU time per MD step [s]                     26.061410            33.822750<br> MD| Energy drift per atom [K]           0.374503646625E+03   0.205283418423E+03<br> MD| Potential energy [hartree]         -0.262589862674E+04  -0.262592631376E+04<br> MD| Kinetic energy [hartree]            0.137757326096E+00   0.119719069562E+00<br> MD| Temperature [K]                             376.625724           327.309498<br> MD| ***************************************************************************<br><br> Spin 1<br><br> Number of electrons:                                                        435<br> Number of occupied orbitals:                                                435<br> Number of molecular orbitals:                                               435<br><br> Spin 2<br><br> Number of electrons:                                                        434<br> Number of occupied orbitals:                                                434<br> Number of molecular orbitals:                                               434<br><br> Number of orbital functions:                                               1975<br> Number of independent orbital functions:                                   1975<br><br> Extrapolation method: PS Nth order<br> Extrapolation order:  2<br><br><br> SCF WAVEFUNCTION OPTIMIZATION<br><br>  ----------------------------------- OT ---------------------------------------<br>  Minimizer      : DIIS                : direct inversion<br>                                         in the iterative subspace<br>                                         using   7 DIIS vectors<br>                                         safer DIIS on<br>  Preconditioner : FULL_SINGLE_INVERSE : inversion of <br>                                         H + eS - 2*(Sc)(c^T*H*c+const)(Sc)^T<br>  Precond_solver : DEFAULT<br>  stepsize       :    0.08000000                  energy_gap     :    0.08000000<br>  ortho_irac     : CHOL                           irac_degree    :             4<br>  max_irac       :            50                  eps_irac       :   0.10000E-09<br>  eps_irac_switch:   0.10000E-01                  eps_irac_quick_exit: 0.100E-04<br>  on_the_fly_loc : F<br>  ----------------------------------- OT ---------------------------------------<br><br>  Step     Update method      Time    Convergence         Total energy    Change<br>  ------------------------------------------------------------------------------<br>     1 OT DIIS     0.80E-01    1.6     0.00000775     -2625.8983262879 -2.63E+03<br>     2 OT DIIS     0.80E-01    1.7     0.00000405     -2625.8983310938 -4.81E-06<br>     3 OT DIIS     0.80E-01    1.7     0.00000353     -2625.8983328495 -1.76E-06<br>     4 OT DIIS     0.80E-01    1.7     0.00000334     -2625.8983350122 -2.16E-06<br>     5 OT DIIS     0.80E-01    1.8     0.00000315     -2625.8983386726 -3.66E-06<br>     6 OT DIIS     0.80E-01    1.7     0.00000296     -2625.8983443709 -5.70E-06<br>     7 OT DIIS     0.80E-01    1.7     0.00000269     -2625.8983545672 -1.02E-05<br>     8 OT DIIS     0.80E-01    1.7     0.00000249     -2625.8983637011 -9.13E-06<br>     9 OT DIIS     0.80E-01    1.7     0.00000233     -2625.8983715220 -7.82E-06<br>    10 OT DIIS     0.80E-01    1.7     0.00000220     -2625.8983782333 -6.71E-06<br>    11 OT DIIS     0.80E-01    1.8     0.00000210     -2625.8983844367 -6.20E-06<br>    12 OT DIIS     0.80E-01    1.7     0.00000203     -2625.8983895822 -5.15E-06<br>    13 OT DIIS     0.80E-01    1.7     0.00000197     -2625.8983941766 -4.59E-06<br>    14 OT DIIS     0.80E-01    1.7     0.00000191     -2625.8983986569 -4.48E-06<br>    15 OT DIIS     0.80E-01    1.7     0.00000185     -2625.8984037404 -5.08E-06<br>    16 OT DIIS     0.80E-01    1.7     0.00000178     -2625.8984097126 -5.97E-06<br>    17 OT DIIS     0.80E-01    1.7     0.00000166     -2625.8984185968 -8.88E-06<br>    18 OT DIIS     0.80E-01    1.6     0.00000154     -2625.8984272390 -8.64E-06<br>    19 OT DIIS     0.80E-01    1.7     0.00000142     -2625.8984357725 -8.53E-06<br>    20 OT DIIS     0.80E-01    1.7     0.00000130     -2625.8984426842 -6.91E-06<br>    21 OT DIIS     0.80E-01    1.7     0.00000121     -2625.8984475524 -4.87E-06<br>    22 OT DIIS     0.80E-01    1.7     0.00000113     -2625.8984512475 -3.70E-06<br>    23 OT DIIS     0.80E-01    1.7     0.00000106     -2625.8984545255 -3.28E-06<br>    24 OT DIIS     0.80E-01    1.7     0.00000099     -2625.8984573944 -2.87E-06<br><br> *** SCF run terminated - exceeded requested execution time:   86340.000 seconds.<br><br> *** Execution time now:    86340.037 seconds.<br><br>  *** SCF run converged in    24 steps ***<br><br><br>  Electronic density on regular grids:       -869.0000000000        0.0000000000<br>  Core density on regular grids:              868.9999999985       -0.0000000015<br>  Total charge density on r-space grids:       -0.0000000014<br>  Total charge density g-space grids:          -0.0000000014<br><br>  Overlap energy of the core charge distribution:               0.00000146582976<br>  Self energy of the core charge distribution:              -4570.41375350254566<br>  Core Hamiltonian energy:                                   1458.28031159567945<br>  Hartree energy:                                             899.55026105138484<br>  Exchange-correlation energy:                               -412.42098926839282<br>  Dispersion energy:                                           -0.89428873636523<br><br>  Total energy:                                             -2625.89845739440943<br><br>  outer SCF iter =    1 RMS gradient =   0.99E-06 energy =      -2625.8984573944<br>  outer SCF loop converged in   1 iterations or   24 steps<br><br><br> ENERGY| Total FORCE_EVAL ( QS ) energy [a.u.]:            -2625.898460009454993<br><br> *** MD run terminated - exceeded requested execution time:   86340.000 seconds.<br><br> *** Execution time now:    86343.048 seconds.</font><br><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, June 13, 2022 at 12:19:20 PM UTC+2 Sam Broderick wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;">An additional question: after a global run, where the last step did not converge within the WALLTIME I set in the input:<div><br></div><div><font face="Courier New"> *** SCF run terminated - exceeded requested execution time:   86340.000 seconds.<br><br> *** Execution time now:    86340.037 seconds.<br></font><br></div><div>What is stored in the restart data? The last converged MD step or the one that did not converge? Could this be why I get this error when I try to start a production run form this? Sorry for the newbie questions.</div><div><br></div><div><font face="Courier New">READ RESTART : WARNING : nspin is not equal <br><br> *******************************************************************************<br> *   ___                                                                       *<br> *  /   \                                                                      *<br> * [ABORT]                                                                     *<br> *  \___/                     Reducing nspin is not possible.                  *<br> *    |                                                                        *<br> *  O/|                                                                        *<br> * /| |                                                                        *<br> * / \                                                          qs_mo_io.F:708 *<br> *******************************************************************************<br><br><br> ===== Routine Calling Stack ===== <br><br>            8 read_mo_set_from_restart<br>            7 calculate_first_density_matrix<br>            6 scf_env_initial_rho_setup<br>            5 init_scf_run<br>            4 qs_energies<br>            3 qs_forces<br>            2 qs_mol_dyn_low<br>            1 CP2K</font><br></div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, June 13, 2022 at 11:42:26 AM UTC+2 Sam Broderick wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear cp2k aficionados,<div><br></div><div><br></div><div>It seems to me that I have run into a strong limitation of cp2k, but I am not know enough to anything close to sure. My goal: determine spectroscopic response of an organic molecule near a metal nano-particle.</div><div><br></div><div>On the one hand, &DIAGONALIZATION is strongly recommended for metals. On the other hand, TRAVIS requires &PERIODIC_EFIELD to determine the polarizability, but this means &OT. I am having severe difficulties with the production run with a thermostat.</div><div><br></div><div>Is cp2k the right tool or am I just not doing it right (e.g., something better than DZVP-MOLOPT-SR-GTH and GTH-PBE-q)</div><div><br></div><div>Would you please have a look at my .inp and provide me with some tips? My boss is quite dissatisfied with node hour usage while I try to figure this out.</div><div><br></div><div>Many, many thanks</div><div>Sam</div></blockquote></div></blockquote></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/1cb69247-862f-4dba-85a8-4953bed216e9n%40googlegroups.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/1cb69247-862f-4dba-85a8-4953bed216e9n%40googlegroups.com</a>.<br />