The output from the production one (the global run is large show I include the end here:<div><br></div><div><font face="Courier New">MD| ***************************************************************************<br> MD| Step number 5104<br> MD| Time [fs] 2552.000000<br> MD| Conserved quantity [hartree] -0.262582505304E+04<br> MD| ---------------------------------------------------------------------------<br> MD| Instantaneous Averages<br> MD| CPU time per MD step [s] 26.061410 33.822750<br> MD| Energy drift per atom [K] 0.374503646625E+03 0.205283418423E+03<br> MD| Potential energy [hartree] -0.262589862674E+04 -0.262592631376E+04<br> MD| Kinetic energy [hartree] 0.137757326096E+00 0.119719069562E+00<br> MD| Temperature [K] 376.625724 327.309498<br> MD| ***************************************************************************<br><br> Spin 1<br><br> Number of electrons: 435<br> Number of occupied orbitals: 435<br> Number of molecular orbitals: 435<br><br> Spin 2<br><br> Number of electrons: 434<br> Number of occupied orbitals: 434<br> Number of molecular orbitals: 434<br><br> Number of orbital functions: 1975<br> Number of independent orbital functions: 1975<br><br> Extrapolation method: PS Nth order<br> Extrapolation order: 2<br><br><br> SCF WAVEFUNCTION OPTIMIZATION<br><br> ----------------------------------- OT ---------------------------------------<br> Minimizer : DIIS : direct inversion<br> in the iterative subspace<br> using 7 DIIS vectors<br> safer DIIS on<br> Preconditioner : FULL_SINGLE_INVERSE : inversion of <br> H + eS - 2*(Sc)(c^T*H*c+const)(Sc)^T<br> Precond_solver : DEFAULT<br> stepsize : 0.08000000 energy_gap : 0.08000000<br> ortho_irac : CHOL irac_degree : 4<br> max_irac : 50 eps_irac : 0.10000E-09<br> eps_irac_switch: 0.10000E-01 eps_irac_quick_exit: 0.100E-04<br> on_the_fly_loc : F<br> ----------------------------------- OT ---------------------------------------<br><br> Step Update method Time Convergence Total energy Change<br> ------------------------------------------------------------------------------<br> 1 OT DIIS 0.80E-01 1.6 0.00000775 -2625.8983262879 -2.63E+03<br> 2 OT DIIS 0.80E-01 1.7 0.00000405 -2625.8983310938 -4.81E-06<br> 3 OT DIIS 0.80E-01 1.7 0.00000353 -2625.8983328495 -1.76E-06<br> 4 OT DIIS 0.80E-01 1.7 0.00000334 -2625.8983350122 -2.16E-06<br> 5 OT DIIS 0.80E-01 1.8 0.00000315 -2625.8983386726 -3.66E-06<br> 6 OT DIIS 0.80E-01 1.7 0.00000296 -2625.8983443709 -5.70E-06<br> 7 OT DIIS 0.80E-01 1.7 0.00000269 -2625.8983545672 -1.02E-05<br> 8 OT DIIS 0.80E-01 1.7 0.00000249 -2625.8983637011 -9.13E-06<br> 9 OT DIIS 0.80E-01 1.7 0.00000233 -2625.8983715220 -7.82E-06<br> 10 OT DIIS 0.80E-01 1.7 0.00000220 -2625.8983782333 -6.71E-06<br> 11 OT DIIS 0.80E-01 1.8 0.00000210 -2625.8983844367 -6.20E-06<br> 12 OT DIIS 0.80E-01 1.7 0.00000203 -2625.8983895822 -5.15E-06<br> 13 OT DIIS 0.80E-01 1.7 0.00000197 -2625.8983941766 -4.59E-06<br> 14 OT DIIS 0.80E-01 1.7 0.00000191 -2625.8983986569 -4.48E-06<br> 15 OT DIIS 0.80E-01 1.7 0.00000185 -2625.8984037404 -5.08E-06<br> 16 OT DIIS 0.80E-01 1.7 0.00000178 -2625.8984097126 -5.97E-06<br> 17 OT DIIS 0.80E-01 1.7 0.00000166 -2625.8984185968 -8.88E-06<br> 18 OT DIIS 0.80E-01 1.6 0.00000154 -2625.8984272390 -8.64E-06<br> 19 OT DIIS 0.80E-01 1.7 0.00000142 -2625.8984357725 -8.53E-06<br> 20 OT DIIS 0.80E-01 1.7 0.00000130 -2625.8984426842 -6.91E-06<br> 21 OT DIIS 0.80E-01 1.7 0.00000121 -2625.8984475524 -4.87E-06<br> 22 OT DIIS 0.80E-01 1.7 0.00000113 -2625.8984512475 -3.70E-06<br> 23 OT DIIS 0.80E-01 1.7 0.00000106 -2625.8984545255 -3.28E-06<br> 24 OT DIIS 0.80E-01 1.7 0.00000099 -2625.8984573944 -2.87E-06<br><br> *** SCF run terminated - exceeded requested execution time: 86340.000 seconds.<br><br> *** Execution time now: 86340.037 seconds.<br><br> *** SCF run converged in 24 steps ***<br><br><br> Electronic density on regular grids: -869.0000000000 0.0000000000<br> Core density on regular grids: 868.9999999985 -0.0000000015<br> Total charge density on r-space grids: -0.0000000014<br> Total charge density g-space grids: -0.0000000014<br><br> Overlap energy of the core charge distribution: 0.00000146582976<br> Self energy of the core charge distribution: -4570.41375350254566<br> Core Hamiltonian energy: 1458.28031159567945<br> Hartree energy: 899.55026105138484<br> Exchange-correlation energy: -412.42098926839282<br> Dispersion energy: -0.89428873636523<br><br> Total energy: -2625.89845739440943<br><br> outer SCF iter = 1 RMS gradient = 0.99E-06 energy = -2625.8984573944<br> outer SCF loop converged in 1 iterations or 24 steps<br><br><br> ENERGY| Total FORCE_EVAL ( QS ) energy [a.u.]: -2625.898460009454993<br><br> *** MD run terminated - exceeded requested execution time: 86340.000 seconds.<br><br> *** Execution time now: 86343.048 seconds.</font><br><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, June 13, 2022 at 12:19:20 PM UTC+2 Sam Broderick wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;">An additional question: after a global run, where the last step did not converge within the WALLTIME I set in the input:<div><br></div><div><font face="Courier New"> *** SCF run terminated - exceeded requested execution time: 86340.000 seconds.<br><br> *** Execution time now: 86340.037 seconds.<br></font><br></div><div>What is stored in the restart data? The last converged MD step or the one that did not converge? Could this be why I get this error when I try to start a production run form this? Sorry for the newbie questions.</div><div><br></div><div><font face="Courier New">READ RESTART : WARNING : nspin is not equal <br><br> *******************************************************************************<br> * ___ *<br> * / \ *<br> * [ABORT] *<br> * \___/ Reducing nspin is not possible. *<br> * | *<br> * O/| *<br> * /| | *<br> * / \ qs_mo_io.F:708 *<br> *******************************************************************************<br><br><br> ===== Routine Calling Stack ===== <br><br> 8 read_mo_set_from_restart<br> 7 calculate_first_density_matrix<br> 6 scf_env_initial_rho_setup<br> 5 init_scf_run<br> 4 qs_energies<br> 3 qs_forces<br> 2 qs_mol_dyn_low<br> 1 CP2K</font><br></div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, June 13, 2022 at 11:42:26 AM UTC+2 Sam Broderick wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear cp2k aficionados,<div><br></div><div><br></div><div>It seems to me that I have run into a strong limitation of cp2k, but I am not know enough to anything close to sure. My goal: determine spectroscopic response of an organic molecule near a metal nano-particle.</div><div><br></div><div>On the one hand, &DIAGONALIZATION is strongly recommended for metals. On the other hand, TRAVIS requires &PERIODIC_EFIELD to determine the polarizability, but this means &OT. I am having severe difficulties with the production run with a thermostat.</div><div><br></div><div>Is cp2k the right tool or am I just not doing it right (e.g., something better than DZVP-MOLOPT-SR-GTH and GTH-PBE-q)</div><div><br></div><div>Would you please have a look at my .inp and provide me with some tips? My boss is quite dissatisfied with node hour usage while I try to figure this out.</div><div><br></div><div>Many, many thanks</div><div>Sam</div></blockquote></div></blockquote></div>
<p></p>
-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/1cb69247-862f-4dba-85a8-4953bed216e9n%40googlegroups.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/1cb69247-862f-4dba-85a8-4953bed216e9n%40googlegroups.com</a>.<br />