I find that we can test for the units of the Hartree potential by using a test molecule. I selected Li2 and applied an external electric field (Volts/Angstroms). First obtain the Hartree Potential cube file for a zero external potential<br><div><br></div><div># electric field along the z direction at efieldmag eV/Angstrom or efieldmag V/Angstrom<br>    &EXTERNAL_POTENTIAL<br>      FUNCTION (A/B)*Z<br>      VALUES [eV] ${efieldmag} [angstrom] 1.0<br>      PARAMETERS A B<br>    &END EXTERNAL_POTENTIAL</div><div><br></div><div><br></div><div>Cutoff = 400, RelCutoff=80<br></div><div>so we set efieldmag = 0.0</div><div><br></div><div>Now using a box/cell **without periodic boundary conditions** we can optimize the geometry ( an energy calculation should also work ) now we use cubecruncher to obtain the potential along the z axis. We expect the initial slope, which is equal to the initial electric field magnitude in the z-direction. Now molecules will have an electric field around them due to their charge distribution of nuclei and electrons so even when efieldmag=0.0 the electric field around the molecule will be nonzero and will diminish as you move away from the molecule. If the box is large enough the influence of the molecule on the initial electric field will nearly vanish far from the molecule. I used {Lx, Ly, Lz} of {12,12,15} , {12,12,20}, {12,12,25} and the initial slopes are -0.019047, -0.00027563, -0.0000032. The initial slope is obtained on the left in the limit as z --> 0. We see the influence of the molecule can be greatly reduced in a sufficiently large box and this is expected to be true for any molecule in a sufficiently large box/cell. <br></div><div><br></div><div>Now we set efieldmag=0.005 Volts/Angstrom, using a box with dimensions of {12,12,15}, {12,12,20}, {12,12, 25} and the initial slopes are -0.01932522, -0.00008413067, -0.0001806136</div><div>Next we set Cutoff=600, relCutoff=80 and box size {12,12, 25} and the initial slope is -0.0001811421</div><div>Next we set Cutoff=800, relCutoff=80  and box size {12,12, 25} and the initial slope is -0.0001815272</div><div>Next we set Cutoff=800, relCutoff=80  and box size {12,12, 35} and the initial slope is -0.0001837458</div><div><br></div><div>* assumption 1:                                   Hartree potential has the units of hartree/e = 27.211386 Volts / a.u.</div><div>*assumption 2:                                    Electric Field Magnitude (Volts/Angstroms) = 27.211386 * (Hartree Potential at a point)</div><div><br></div><div>Check: Given an electric field magnitude of 0.005 V/Ang we expect that the observed Hartree potential sufficiently far from the molecule will yield a slope along the z axis, Ez (electric field in the z direction) of the same magnitude.                We expect that the result should approach (0.005 V/Ang)/27.211386 = 0.000183747 a.u. ( the expected slope of the Hartree potential due only to the external potential)</div><div><br></div><div>We see that the initial slope is equal to efieldmag/27.211386 (Volts/a.u.) which shows that assumption 1 holds. <br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, March 22, 2021 at 2:25:52 PM UTC-4 fyya...@gmail.com wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><div dir="ltr">Hi, Kai,<div><br></div><div>50000 MV/cm = 50 V / (10E8) Angstrom = 5E-7 V/Angstrom, which is a very very small electric field. </div><div><br></div><div>Best,</div><div><br></div><div>Fangyong</div></div><br><div class="gmail_quote"></div><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Mar 22, 2021 at 1:07 PM Kaixuan Chen <<a href data-email-masked rel="nofollow">kaixu...@gmail.com</a>> wrote:<br></div></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><br><div>Dear all,</div><div>I have generated the cube files of hartree potential (<span><a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT.html&source=gmail&ust=1649943308218000&usg=AOvVaw2em8N_DGd3qyKmgzgGAay4">CP2K_INPUT</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL.html&source=gmail&ust=1649943308218000&usg=AOvVaw0Ei19n_0kPP1sH0DA0D_Qj">FORCE_EVAL</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT.html&source=gmail&ust=1649943308218000&usg=AOvVaw0fW-HrBdWblsd8Z65rHJ96">DFT</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT.html&source=gmail&ust=1649943308219000&usg=AOvVaw2Zroq2d_Y7mSubwraPFX5l">PRINT</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT/V_HARTREE_CUBE.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT/V_HARTREE_CUBE.html&source=gmail&ust=1649943308219000&usg=AOvVaw0FxtZW2CaKUnqgG9aSq8Gf">V_HARTREE_CUBE</a></span>) and electric field (<span><a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT.html&source=gmail&ust=1649943308219000&usg=AOvVaw0HixqovEcGQSIu-ZosUNjw">CP2K_INPUT</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL.html&source=gmail&ust=1649943308219000&usg=AOvVaw0CM4am5eW0AkCozkuA64c4">FORCE_EVAL</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT.html&source=gmail&ust=1649943308219000&usg=AOvVaw0YcNaVQOecoreKOIN2REuo">DFT</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT.html&source=gmail&ust=1649943308219000&usg=AOvVaw2Zroq2d_Y7mSubwraPFX5l">PRINT</a> /
               <a href="https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT/EFIELD_CUBE.html" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://manual.cp2k.org/cp2k-8_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT/EFIELD_CUBE.html&source=gmail&ust=1649943308219000&usg=AOvVaw3vzGSrCre0Y_r-9G2VOuHA">EFIELD_CUBE</a></span>) from cp2k. I don't see an explicit description on the units that are used in these cube files. If I take the a.u. as the default unit (hartree/e for potential, and hartree/e/bohr for electric field), the value seems pretty large. For example, I study the single water molecule system. The largest electric field at some density grid is 10~15 hartree/e/bohr, that is, ~50000 MV/cm. Please correct me if I am wrong, but the value seems unreasonable to me.</div><div>Any suggestion will be welcome, thanks in advance.</div><div>Best,</div><div>Kai<br></div>

<p></p></blockquote></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">

-- <br>
You received this message because you are subscribed to the Google Groups "cp2k" group.<br>
To unsubscribe from this group and stop receiving emails from it, send an email to <a href data-email-masked rel="nofollow">cp2k+uns...@googlegroups.com</a>.<br>
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/dc6eef99-9c9e-4c32-a57e-0dbd4065fff3n%40googlegroups.com?utm_medium=email&utm_source=footer" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/d/msgid/cp2k/dc6eef99-9c9e-4c32-a57e-0dbd4065fff3n%2540googlegroups.com?utm_medium%3Demail%26utm_source%3Dfooter&source=gmail&ust=1649943308219000&usg=AOvVaw3e0MmMjlcwJNkOoZW3NUOp">https://groups.google.com/d/msgid/cp2k/dc6eef99-9c9e-4c32-a57e-0dbd4065fff3n%40googlegroups.com</a>.<br>
</blockquote></div>
</blockquote></div>

<p></p>

-- <br />
You received this message because you are subscribed to the Google Groups "cp2k" group.<br />
To unsubscribe from this group and stop receiving emails from it, send an email to <a href="mailto:cp2k+unsubscribe@googlegroups.com">cp2k+unsubscribe@googlegroups.com</a>.<br />
To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/d493d5ae-5afd-44e3-a632-b05b65f6de79n%40googlegroups.com?utm_medium=email&utm_source=footer">https://groups.google.com/d/msgid/cp2k/d493d5ae-5afd-44e3-a632-b05b65f6de79n%40googlegroups.com</a>.<br />