Hi Nick,<div><br></div><div>Yes, this is very helpful. But another issue is that V_HARTREE_CUBE is only valid for QS with GPW which is mentioned in the manual... I'm wondering is there any approach to print the elctrostatic potential for ALL_ELECTRON basis sets with GAPW?</div><div><br></div><div>Regards,</div><div>Hongyang<br><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">在2021年5月25日星期二 UTC+10 上午10:29:3...@berkeley.edu> 写道:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;">For potential alignment corrections, one should use the electrostatic potential in the V_HARTREE cube file. <div><br></div><div>Many potential alignment correction schemes exist, but I am partial to the one by Freysoldt (<a href="https://doi.org/10.1103/PhysRevLett.102.016402" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=zh-CN&q=https://doi.org/10.1103/PhysRevLett.102.016402&source=gmail&ust=1621989183619000&usg=AFQjCNFJApbyC3idZywyudgG92rCUctQqA">https://doi.org/10.1103/PhysRevLett.102.016402</a>) and its extension to anisotropic systems by Kumagi (<a href="https://doi.org/10.1103/PhysRevB.89.195205" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=zh-CN&q=https://doi.org/10.1103/PhysRevB.89.195205&source=gmail&ust=1621989183619000&usg=AFQjCNHZxGTWaff1vV7q4A88YelVJoiU_w">https://doi.org/10.1103/PhysRevB.89.195205</a>), which are the two I use for charged defect calculations.</div><div><br></div><div>Is this what you need to know, Hongyang?</div><div><br></div><div>-Nick</div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Monday, May 24, 2021 at 4:22:35 PM UTC-7 <a href data-email-masked rel="nofollow">ma...@gmail.com</a> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Hi ub,<div><br></div><div>I'm wondering have you figured out the method to solve the potential alignment correction?</div><div><br></div><div>Regards,</div><div>Hongyang<br><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">在2020年2月7日星期五 UTC+11 下午7:35:46<ub> 写道:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Thanks for the article Matt. I'll go through it to see any similarities to the issues faced.<div><br></div><div>Regards,</div><div>ub</div></div><div dir="ltr"><div><br><br>On Thursday, 6 February 2020 21:11:29 UTC+1, Matt W  wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><self promotion><div><div>Relation between image charge and potential alignment corrections for charged defects in periodic boundary conditions</div><div>TR Durrant, ST Murphy, MB Watkins, AL Shluger</div><div>The Journal of chemical physics 149 (2), 024103 (2019)</div><div></self promotion></div><div><br></div><div>might be useful. You could contact <a href="https://www.ucl.ac.uk/physics-astronomy/people/iris-profile-thomas-durrant" rel="nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=zh-CN&q=https://www.ucl.ac.uk/physics-astronomy/people/iris-profile-thomas-durrant&source=gmail&ust=1621989183620000&usg=AFQjCNHYApXatKN770l-KZtzeQ5GA2mpkQ">Tom Durrant</a> about what he has been doing. There is a load of other stuff in the literature, of course.</div><div><br></div><div>Matt</div><br>On Thursday, February 6, 2020 at 6:17:54 PM UTC, Travis wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Hi,</div><div><br></div><div>To your last question - the authors report the plane-averaged potential (refer to the caption of Fig 2 in your linked paper), not the actual potential. The actual potential should be noisy as you described.<br></div><div><br></div><div>-T<br></div><br>On Thursday, February 6, 2020 at 2:00:32 PM UTC-4, Udit wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hello world,<div><br></div><div>As part of my research, I'm performing simulation of charged dopants in Silicon for calculation of the charge transition levels. One crucial step in the formation energy estimation is the determination of an alignment constant which is determined by comparing the local potential profiles of the defective and pristine supercells. <a href="https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.102.016402" rel="nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=zh-CN&q=https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.102.016402&source=gmail&ust=1621989183620000&usg=AFQjCNEb-h6qtCxpF8xWpGL-R4jR-ozO-w">https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.102.016402</a> (Fig. 2)</div><div><br></div><div>My question is, for the local potential profiles is V_HARTREE_CUBE sufficient? A lot of python codes designed for such calculations do so by evaluating the LOCPOT obtained from VASP calculations. Is V_HARTREE_CUBE similar to the LOCPOT inVASP? </div><div><br></div><div>Also, a lot of these publications during alignment show smoothly varying local potential profiles. However, I find that the Hartree potential profile of the defective supercell varies a lot from that of the pristine supercell and contains a lot of oscilattions mainly around the defect due to the relaxation of atomic positions, which would potentially make the alignment procedure impractical. Any comments or experiences with Charge Transition Level calculations on condensed matter systems would be greatly appreciated!</div><div><br></div><div>Thanks.</div></div></blockquote></div></blockquote></div></div></blockquote></div></div></blockquote></div></blockquote></div></blockquote></div>