<div><br></div><div><br></div>Hi<div><br></div><div>The smearing with finite electronic temperature is needed in order to allow convergence of the metallic electronic structure, even if the structure is kept a 0K. The number of added MOS depends on the density of states around Fermi. Too many states do not hurt, in terms of convergence. I just chose a safe number, probably less are also OK, as a lower smearing temperature would also work. </div><div>As a functional I took one that I often use. Anyway, I think that adding VDW is a good idea. </div><div>All these aspects are more general on electronic structure theory and not specific of CP2K. Please read in the literature for better understanding.</div><div>Regards</div><div>Marcella</div><div><br></div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Friday, January 22, 2021 at 8:37:46 AM UTC+1 ASSIDUO Network wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;">I should have added this earlier, the simulation must be performed at 0 K (my supervisor's request), it's a static run. Therefore, I cannot set the temperature to 500 K. Also, why the need for ADDED_MOS=200? In another thread, I was told that ADDED_MOS=100 was too much.<br><br>Also, why the use of
FUNCTIONAL XC_GGA_C_PBE and
FUNCTIONAL XC_GGA_X_RPW86? I'm new to CP2K so just want to understand everything better.<div class="gmail_quote"><div dir="auto" class="gmail_attr">On Friday, January 22, 2021 at 9:24:10 AM UTC+2 Marcella Iannuzzi wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Hi Lenard, <div><br></div><div>I got it converging in 10 iterations.</div><div>The outer SCF with diagonalisation is useless, since there is no preconditioner.</div><div>With metals you need to use smearing. </div><div>Here are some settings I used:</div><div><div> ADDED_MOS 200</div><div> &DIAGONALIZATION T</div><div> ALGORITHM STANDARD</div><div> &END DIAGONALIZATION</div><div> &MIXING T</div><div> METHOD BROYDEN_MIXING</div><div> ALPHA 0.01</div><div> BETA 0.5</div><div> NBUFFER 8</div><div> &END MIXING</div><div> &SMEAR</div><div> METHOD FERMI_DIRAC</div><div> ELECTRONIC_TEMPERATURE 500</div><div> &END SMEAR</div></div><div><br></div><div><div> &XC</div><div> &XC_FUNCTIONAL</div><div> &LIBXC</div><div> FUNCTIONAL XC_GGA_X_RPW86</div><div> &END LIBXC</div><div> &LIBXC</div><div> FUNCTIONAL XC_GGA_C_PBE</div><div> &END LIBXC</div><div> &END XC_FUNCTIONAL</div><div><br></div><div> &VDW_POTENTIAL</div><div> POTENTIAL_TYPE NON_LOCAL</div><div> &NON_LOCAL</div><div> CUTOFF 300</div><div> TYPE RVV10</div><div>## VERBOSE_OUTPUT</div><div> KERNEL_FILE_NAME ${data}/rVV10_kernel_table.dat</div><div> &END NON_LOCAL</div><div> &END VDW_POTENTIAL</div><div> &END XC</div></div><div><br></div><div>The results:</div><div><br></div><div><div> Step Update method Time Convergence Total energy Change</div><div> ------------------------------------------------------------------------------</div><div> 1 NoMix/Diag. 0.10E-01 20.0 0.51067755 -133.2796876462 -1.33E+02</div><div> 2 Broy./Diag. 0.10E-01 17.6 0.00064724 -136.0334243526 -2.75E+00</div><div> 3 Broy./Diag. 0.10E-01 17.5 0.03257808 -134.7316158415 1.30E+00</div><div> 4 Broy./Diag. 0.10E-01 17.7 0.00019866 -133.0666478987 1.66E+00</div><div> 5 Broy./Diag. 0.10E-01 17.6 0.00228816 -133.1462861174 -7.96E-02</div><div> 6 Broy./Diag. 0.10E-01 17.6 0.00032933 -133.1654553845 -1.92E-02</div><div> 7 Broy./Diag. 0.10E-01 17.6 0.00000406 -133.1816175525 -1.62E-02</div><div> 8 Broy./Diag. 0.10E-01 17.7 0.00009047 -133.1825852315 -9.68E-04</div><div> 9 Broy./Diag. 0.10E-01 17.6 0.00000504 -133.1830490186 -4.64E-04</div><div> 10 Broy./Diag. 0.10E-01 17.6 0.00000031 -133.1828944498 1.55E-04</div><div><br></div><div> *** SCF run converged in 10 steps ***</div><div><br></div><div><br></div><div> Electronic density on regular grids: -44.0000000000 0.0000000000</div><div> Core density on regular grids: 43.9999999999 -0.0000000001</div><div> Total charge density on r-space grids: -0.0000000001</div><div> Total charge density g-space grids: -0.0000000001</div><div><br></div><div> Overlap energy of the core charge distribution: 0.00000001219968</div><div> Self energy of the core charge distribution: -231.41335460772382</div><div> Core Hamiltonian energy: 74.19344628639691</div><div> Hartree energy: 45.27318657026385</div><div> Exchange-correlation energy: -21.30000506759340</div><div> Dispersion energy: 0.06400174824714</div><div> Electronic entropic energy: -0.00016939092888</div><div> Fermi energy: 0.34714684334798</div><div><br></div><div> Total energy: -133.18289444982969</div><div><br></div><br></div><div><br></div><div>Regards</div><div>Marcella</div><div><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Friday, January 22, 2021 at 6:48:12 AM UTC+1 ASSIDUO Network wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Hi there everyone, hope you've had a great week.<br><br>I've been trying to run a cell optimization of bulk Au, and I am using the attached input file, but I'm not getting an inner loop SCF convergence. I've made many small changes, such as including/excluding OUTER_SCF, changing the SCF convergence criterion, changing the number of cell optimization steps, changing the number of KPoints and changing the mixing method. Nothing has worked. I haven't tried a combination of the above though.<div><br></div><div>Do you perhaps have any suggestions to me on how to get convergence? Furthermore, I would also appreciate some tips to speed up my simulations (settings/flags) wise.<br><br>Thanks in advance,<br>Lenard <br><br><br></div></blockquote></div></blockquote></div></blockquote></div>