Dear all, <div><br></div><div>I would like to follow up on this question that I asked on June 10 this year.</div><div>I realize that I might have expressed myself in a very complicated way, and I therefore try to be clearer this time.</div><div><br></div><div>The problem is that when I diagonalize the Hessian printed in the cp2k output file with the following python code (The complete python code is attached)</div><div><br></div><font face="Courier New">from numpy import genfromtxt<br>import numpy as np<br>import sys<br><br>hessianFile=sys.argv[1]<br>hessian = genfromtxt(hessianFile,delimiter=',')<br>freq = np.linalg.eigvals(hessian)</font><div><br></div><div> </div><div>, I get slightly different frequencies than what is printed in the output file (and the .mol file). The frequencies are compared in the table below.</div><div>Column 2: Frequencies from CP2K output file</div><div>Column 3: Frequencies obtained when diagonalizing the Hessian with numpy</div><div><br></div><div><p>Table 1: The eight lowest
frequencies. There are 48 in total.</p>
<img src="" alt="" data-iml="1495164.834999945"><br>
<p>What am I doing wrong in the diagonalization?</p><p>Thanks a lot for your help.</p><p>Regards,</p><p>Torstein Fjermestad</p><p><br></p><p><br></p>
<p><br></p><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">onsdag 10. juni 2020 kl. 15:56:53 UTC+2 skrev Torstein Fjermestad:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;"><div dir="ltr">Dear all, <div><br></div><div>I would like to use TAMkin (<a href="http://molmod.github.io/tamkin/" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=no&q=http://molmod.github.io/tamkin/&source=gmail&ust=1608498665747000&usg=AFQjCNF-zHDW2zv8LU7aADsqeN_tyJOmuw">http://molmod.github.io/tamkin/</a>) to compute thermodynamic properties from the vibrational frequencies computed with CP2K.</div><div>As I have understood it, the way TAMkin works is to read and diagonalize the Hessian matrix printed in the CP2K output.</div><div>When I compare the frequencies obtained with TAMkin with those obtained with cp2k, the values are not the same (Compare column 2 and 3 in the table below). </div><div><br></div><div>The first task is then to understand how CP2K computes the frequencies. To investigate this, I copied the Hessian matrix from the CP2K output (printed below the string "Hessian in cartesian coordinates") and pasted it into Excel and saved it as a csv file. This file I read into python and diagonalized the Hessian with numpy. The frequencies I get are different from those printed in the cp2k output file (compare column 3 and 4 in the table below). </div><div>I have assumed that the units of the Hessian matrix in the cp2k output file are Ry*bohr-2*kamu-1 (kamu = 1000*amu). This assumption is based on trial and error; it was what got me closest to the cp2k frequencies. </div><div><br></div><div><br></div><div>Table 1: The eight lowest frequencies. There are 48 in total.</div><div><table border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse;border-width:initial;border-style:none">
<tbody><tr style="height:30.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-width:1pt;border-style:solid;border-color:windowtext;padding:0cm 5.4pt;height:30pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">frequencies</span><u></u><u></u></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top:1pt solid windowtext;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left-width:initial;border-left-style:none;padding:0cm 5.4pt;height:30pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">TAMkin / <br>
cm-1<u></u><u></u></span></p>
</td>
<td width="76" valign="top" style="width:2cm;border-top:1pt solid windowtext;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left-width:initial;border-left-style:none;padding:0cm 5.4pt;height:30pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">cp2k / <br>
cm-1<u></u><u></u></span></p>
</td>
<td width="151" valign="top" style="width:4cm;border-top:1pt solid windowtext;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left-width:initial;border-left-style:none;padding:0cm 5.4pt;height:30pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">Diag., cp2k Hessian / <br>
cm-1<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">1<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">31.1<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">27.3<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">32.6<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">2<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">38.3<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">40.8<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">40.1<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">3<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">47.7<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">51.0<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">50.2<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">4<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">74.7<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">74.0<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">78.2<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">5<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">82.0<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">80.0<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">85.8<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">6<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">111.0<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">109.9<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">116.3<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">7<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">223.7<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">224.1<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">234.3<u></u><u></u></span></p>
</td>
</tr>
<tr style="height:15.0pt">
<td width="85" nowrap valign="top" style="width:63.8pt;border-right:1pt solid windowtext;border-bottom:1pt solid windowtext;border-left:1pt solid windowtext;border-top-width:initial;border-top-style:none;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">8<u></u><u></u></span></p>
</td>
<td width="75" nowrap valign="top" style="width:56.45pt;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">245.6<u></u><u></u></span></p>
</td>
<td width="76" nowrap valign="top" style="width:2cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">246.3<u></u><u></u></span></p>
</td>
<td width="151" nowrap valign="top" style="width:4cm;border-top-width:initial;border-style:none solid solid none;border-left-width:initial;border-bottom-width:1pt;border-bottom-color:windowtext;border-right-width:1pt;border-right-color:windowtext;padding:0cm 5.4pt;height:15pt">
<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:normal"><span lang="IT">257.3<u></u><u></u></span></p>
</td>
</tr>
</tbody></table></div><div><br></div><div>What is wrong with my calculation?</div><div>What steps should be done to go from the Hessian to the frequencies?</div><div><br></div><div>The Hessian in csv format, the python script and the cp2k output file are attached. </div><div><br></div><div>Thanks a lot for your help.</div><div><br></div><div>Regards,</div><div>Torstein Fjermestad</div><div> </div><div><br></div><div><br></div></div></blockquote></div>