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Prediction of aqueous free energies of solvation
using coupled QM and MM explicit solvent
simulations†

Daniel Sadowsky *ab and J. Samuel Arey ‡a

A method based on molecular dynamics simulations which employ two distinct levels of theory is

proposed and tested for the prediction of Gibbs free energies of solvation for non-ionic solutes in water.

The method consists of two additive contributions: (i) an evaluation of the free energy of solvation

predicted by a computationally efficient molecular mechanics (MM) method; and (ii) an evaluation of the

free energy difference between the potential energy surface of the MM method and that of a more

computationally intensive first-principles quantum-mechanical (QM) method. The latter is computed by

a thermodynamic integration method based on a series of shorter molecular dynamics simulations that

employ weighted averages of the QM and MM force evaluations. The combined computational

approach is tested against the experimental free energies of aqueous solvation for four solutes. For

solute–solvent interactions that are found to be described qualitatively well by the MM method, the QM

correction makes a modest improvement in the predicted free energy of aqueous solvation. However, for

solutes that are found to not be adequately described by the MM method, the QM correction does not

improve agreement with experiment. These preliminary results provide valuable insights into the novel

concept of implementing thermodynamic integration between two model chemistries, suggesting that it

is possible to use QM methods to improve upon the MM predictions of free energies of aqueous solvation.

1 Introduction

Prediction of the free energy of aqueous solvation (DsolvG),
defined here as the difference in partial molar Gibbs free energy
between the aqueous phase and the gas phase, is relevant to
many fields in the chemical sciences. Quantitative assessments
of free energies are of critical importance, for example, to
atmospheric chemistry, aquatic chemistry, and biochemistry,
and are often established through the experimental determina-
tion of Henry’s law constants. However, there are many classes
of compounds for which the feasibility of such determinations
is limited by high reactivity or low aqueous solubility.1–3

Computational alternatives to experimental determination

include linear free energy relationships,4 electronic structure
calculations with continuum solvation models,5 and molecular
simulation.6,7 Molecular simulations offer the advantage of
explicitly considering the complex structural changes that both
solute and solvent experience owing to interactions such as
hydrogen bonding. However, this rigor comes at the cost of
increased computational intensity relative to predictive models
where these interactions are treated implicitly.

One possible approach to implementing molecular simula-
tions for the prediction of DsolvG is the use of molecular
mechanics (MM) methods.6,7 This approach is based on the
evaluation of computationally efficient analytical potentials
that are amenable to the use of alchemical methods. When
used for the prediction of DsolvG, alchemical methods gradually
introduce or eliminate solute–solvent interactions by way of a
series of unphysical intermediate states between the coupled,
or solvated, state and the uncoupled gas phase and liquid
states.8,9 The intermediate states give access to a thermo-
dynamic path of cavity formation and structuring of the solvent,
and therefore a means for the precise and efficient prediction of
the hydrophobic effect,10,11 including the free energy contribu-
tions of directed solute–solvent interactions such as hydrogen
bonds. However, the approximations of the MM force field also
inevitably limit the accuracy of this approach.
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As an alternative to the MM approach, one could consider
first principles molecular dynamics simulations based on
quantum mechanical (QM) electronic structure calculations.12

These methods potentially offer greater accuracy and applic-
ability than the simplified potentials of MM methods, although
at significantly higher computational cost. However, the
alchemical transformation techniques that are commonly
employed in MM simulations are not possible with current
implementations of QM methods.

Here, we develop and test a methodology for the first-
principles prediction of DsolvG of a non-ionic solute. We pro-
pose an approach that employs two different theoretical model
chemistries: a model chemistry based on a MM molecular
dynamics description of the solute and solvent, and a second
model chemistry based on a QM molecular dynamics descrip-
tion of the (identical) solute/solvent system. Unlike previous
QM/MM13–24 approaches, where each model chemistry describes
a separate part of the system, the present approach uses both
QM and MM model chemistries to describe the entire system,
allowing for the direct comparison of these two potential
energy surfaces. The prediction of DsolvG is achieved through
the computation of a thermodynamic path that connects the
MM and QM potential energy surfaces. This method exploits
the computational efficiency of the MM model chemistry, as
well as the ease of implementing alchemical transformations
with this model chemistry, but also exploits the accuracy and
reliability of the QM model chemistry. Finally, the proposed
method is modular: varying combinations of existing QM
and MM models can be used, in principle, and these models
can be chosen according to convenience or performance
objectives.

2 Experimental data

To test the proposed approach with a preliminary experimental
dataset, we select four experimental free energy of aqueous
solvation data that have been carefully vetted by Warneck25–27

and include experimental uncertainty estimates (Table 1). The
test set is selected not only for low experimental uncertainty,
but also for structural diversity (each organic compound con-
tains novel functional groups), and for a diversity of capacities
to engage in electrostatic (Keesom/Debye), London dispersion,
hydrogen-bonding donor and hydrogen-bonding acceptor
interactions.

3 Methodology
3.1 Overview of approach

The free energy paths that link the MM potential energy surface
to the QM potential energy surface, or free energies of model
chemistry transfer (DMM-QMG) as they are referred to herein,
are computed for the isolated solute (u), the pure solvent (v),
and the combined, solvated system (uv) (as illustrated by the
thermodynamic cycle shown in Fig. 1). We use thermodynamic
integration to compute DMM-QMG for each subsystem. Thermo-
dynamic integration28,29 has the advantages of being concep-
tually simple and reliable to converge, compared to other free
energy methods that could have been considered.30 The compu-
tation of these free energy paths opens up the possibility of a
QM-quality prediction of the free energy of solvation (DsolvGQM)
that is computed as a correction (DMM-QMDsolvG) to an initial
MM estimate (DsolvGMM), in which the term DsolvGMM is
computed with conventional alchemical methods:

DMM-QMDsolvG = DMM-QMG(uv)� DMM-QMG(u) � DMM-QMG(v)
(1)

DsolvGQM = DsolvGMM + DMM-QMDsolvG (2)

The MM model chemistry therefore functions as an auxiliary
method that is used to generate an initial estimate, DsolvGMM,
and not a final prediction of DsolvG. In principle, the QM
correction, DMM-QMDsolvG, to the MM value could quantita-
tively compensate for many of the artifacts originating in the
choice of MM parameters. Eqn (1) and (2) therefore represent a
general, modular methodology to determine a DsolvGQM value
based on a QM potential energy surface that is sampled
exhaustively with Born–Oppenheimer molecular dynamics,
formulated as a QM correction to an initial DsolvGMM estimate
provided by a MM method.

3.2 Thermodynamic integration

In the thermodynamic integration formalism, a coupling para-
meter, l, is introduced which is varied by discrete values from 0
(defined as the system in its initial state) to 1 (defined as the

Table 1 Experimental Gibbs free energies of aqueous solvation of the test
set of 4 solutes (kJ mol�1)

Solute DsolvGexp. a

Argon 8.38 � 0.04 (n = 5)27

Methanol �21.3 � 0.2 (n = 8)25

Acetonitrile �17.7 � 0.1 (n = 1)27

trans-1,2-Dichloroethene �2.36 � 0.02 (n = 2)26

a Intervals refer to standard deviations of experimental determinations.
n refers to number of experimental determinations used in each
evaluation.

Fig. 1 Conceptual diagram showing the thermodynamic cycle that
relates the free energy of aqueous solvation given by the MM method
(DsolvG

MM), free energy of aqueous solvation given by the QM method
(DsolvG

QM), and the free energies of model chemistry transfer (DMM-QMG)
of the solute (u), solvent (v), and solution (uv). Each box represents a
simulation cell with the specified contents (u, v, or uv) and the model
chemistry (MM or QM) applied.

Paper PCCP

Pu
bl

is
he

d 
on

 3
0 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 N

or
th

ea
st

er
n 

U
ni

ve
rs

ity
 o

n 
11

/1
1/

20
20

 6
:3

8:
28

 P
M

. 
View Article Online

https://doi.org/10.1039/d0cp00582g


This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 8021--8034 | 8023

system in its final state). The free energy associated with the
thermodynamic path from 0 to 1 is then computed by sampling
the derivative of the potential energy, U, with respect to l at
each value of l, and integrating:

DG ¼
ð1
0

dUðlÞ
dl

� �
l
dl (3)

Here, all implementations of the thermodynamic integra-
tion formalism use the trapezoidal rule with a uniform grid
(equally spaced values of l) to compute the definite integral in
eqn (3):

DG ¼
Xnl�1
i¼1

dUðlÞ
dl

� �
l¼

i

nl � 1

� dUðlÞ
dl

� �
l¼

i � 1

nl � 1

nl � 1
(4)

In the present study, thermodynamic integration techniques are
used to determine the individual terms in eqn (1) (DMM-QMG(u),
DMM-QMG(v), and DMM-QMG(uv)) and also DsolvGMM, as
explained in the sections that follow.

3.3 Free energies of solvation computed by MM

The DsolvGMM term is computed by a thermodynamic path that
comprises three consecutive steps, as illustrated in Fig. 2.
Starting with the solvent in a liquid state and the solute in a
vacuum: (i) the electrostatic charges are incrementally removed
from the solute, ‘‘turning off’’ the solute–solute electrostatic
interactions; (ii) the solute–solvent Lennard-Jones interactions
are incrementally ‘‘turned on’’, coupling the uncharged solute
with the solvent for the first time; and (iii) the electrostatic
charges on the solute are incrementally restored, ‘‘turning on’’
both the solute–solute and the solute–solvent electrostatic
interactions. Parts (i) and (iii) of this path are each computed
from 9 simulations where the electrostatic charges on all of
the solute atoms are scaled proportionately with l. The free
energies associated with each of these processes are computed
from eqn (3) with 9 equally spaced values of l. Part (ii) of this
path is computed from a series of 33 simulations where all

solute–solvent interactions are described by the interatomic
potential:

UðrÞ ¼ 4el
1

2
ð1� lÞ þ r

s

� �6� ��2
� 1

2
ð1� lÞ þ r

s

� �6� � !�1

(5)

Eqn (5) converges to the Lennard-Jones potential with para-
meters e and s when l = 1, and U(r) becomes 0 when l = 0. The
particular form of eqn (5) has been designed to avoid the numer-
ical instabilities that would result from linear scaling of the
Lennard-Jones potentials.6,31–33 Because there is no thermal con-
tact between the solute and solvent in part (ii) where l = 0, we
applied separate thermostats to the solvent and solute for all three
parts of the thermodynamic path used to construct DsolvGMM.

All simulations are carried out using a trunk version
(svn:15815) of CP2K version 2.7.34,35 Each of the simulations
used for the DsolvGMM thermodynamic path described above are
run for 288 ps with a time step of 0.48 fs in the NPT ensemble.
The target temperature and pressure for these simulations are set
at 298.15 K and 1.01325 bar, and are maintained with a Martyna–
Tobias–Klein algorithm36 with time constants of 96 fs for both
the thermostat and barostat. A cubic cell is used for all simula-
tions. At the beginning of each simulation, the initial 48 ps of
simulated dynamics is considered a system equilibration period,
and this simulation output is discarded (including additional
equilibration time beyond 48 ps was found to have a negligible
effect on the solvation free energy predictions). For the remainder
of each simulation, a finite difference method with a spacing
parameter, h, of 0.001 is used at each time step to compute the
quantity dU/dl using the formula:

dU
dl
¼

Uðlþ hÞ �UðlÞ l ¼ 0

1

2
Uðlþ hÞ �Uðl� hÞð Þ 0o lo 1

UðlÞ �Uðl� hÞ l ¼ 1

8>>>><
>>>>:

(6)

3.4 Free energies of model chemistry transfer

The free energy of model chemistry transfer, DMM-QMG, of
each system is computed using the weighted average of a QM
potential, UQM, and a MM potential, UMM, defined in eqn (7) by
introducing a second coupling parameter, l0.

U(l0) =l0UQM + (1 � l0)UMM (7)

The derivative of this potential is simply the vertical energy
difference between the QM and MM potential energy surfaces:

dUðl0Þ
dl0

� �
l0
¼ UQM �UMM
� 	

l0 (8)

The free energy, DMM-QMG, is obtained by substituting
eqn (8) into eqn (3):

DMM!QMG ¼
ð1
0

UQM �UMM
� 	

l0dl
0 (9)Fig. 2 Overview of thermodynamic path through which DsolvG

MM is
computed (see text for description).

PCCP Paper

Pu
bl

is
he

d 
on

 3
0 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 N

or
th

ea
st

er
n 

U
ni

ve
rs

ity
 o

n 
11

/1
1/

20
20

 6
:3

8:
28

 P
M

. 
View Article Online

https://doi.org/10.1039/d0cp00582g


8024 | Phys. Chem. Chem. Phys., 2020, 22, 8021--8034 This journal is©the Owner Societies 2020

Eqn (9) is evaluated using the formula in eqn (4) for each of
the subsystems that appear in Fig. 1: the solute (DMM-QMG(u)),
the solvent (DMM-QMG(v)), and the solution containing the
solute (DMM-QMG(uv)). These three terms are then employed
in eqn (1), which is used to determine the total contribution
of model chemistry transfer to the free energy of solution,
DMM-QMDsolvG. However, the magnitudes of the terms
that describe the solvent, DMM-QMG(v), and the solution,
DMM-QMG(uv), are particularly large, and the convergence of
DMM-QMDsolvG, which contains a difference of these two large
terms (eqn (1)), may prove to be a computational challenge.
One of the objectives of the present study is to investigate the
practical feasibility of this integration approach.

A solvent bath of 63 water molecules is selected for each
solute, which contains enough solvent molecules for each
of the presently studied solutes to be surrounded by two
full solvent shells. Since the number of solvent molecules is
identical for each solution system, uv, it is only necessary
to compute DMM-QMG(v) once. The determination of
DMM-QMDsolvG for each additional solute therefore requires
only the computation of the DMM-QMG(u) and DMM-QMG(uv)
terms.

Sampling the process of model chemistry transfer (DMM-QMG)
in the NPT ensemble poses several difficulties. A longer equili-
bration time is required than would be required for sampling
in the NVT ensemble; differences in the equilibrium densities
of the MM and QM descriptions of the solvent could lead to
an expansion or contraction of the system that does not
converge in the limited sampling times that are available;
and the choice of QM methods becomes limited to those for
which analytical stress tensor calculations are available.
We choose to assume that the difference in Gibbs free energy
of model transfer of the solution, DMM-QMG(uv), and the
Helmholtz free energy of model transfer of the solution,
DMM-QMA(uv), is equivalent to the analogous difference for
the isolated solvent:

DMM-QMG(uv) � DMM-QMA(uv) E DMM-QMG(v)

� DMM-QMA(v) (10)

Eqn (10) implies that the change of model chemistry leads
to an expansion or contraction of the solution that is equal to
the expansion or contraction experienced by the pure solvent
system. According to this assumption, the overall QM correc-
tion to the MM free energy of aqueous solvation is approxi-
mately the same when sampled in the NVT ensemble versus the
NPT ensemble:

DMM-QMDsolvG E DMM-QMDsolvA (11)

Accurate QM methods such as B97M-V37 and MP238 have
been reported to slightly over-predict the density of water
with Born–Oppenheimer simulations in the NPT ensemble.
However, B97M-V has also been shown to perform well for
other liquid properties with Born–Oppenheimer simulations in
the NVT ensemble at the experimental equilibrium density37

and offer high accuracy potential energy surfaces for water

clusters39 and non-covalent interactions,40 suggesting that the
B97M-V method might be a judicious model chemistry to
satisfy the approximation in eqn (11) while introducing low
overall error in DsolvGQM.

Each DMM-QMG term in eqn (1) is computed using 9
simulations, each having incrementally differing values of l0

(eqn (4)). Each simulation is 14.4 ps in length, with the first
0.144 ps of dynamics of each simulation discarded for equili-
bration (the autocorrelation functions of the difference in
eqn (8) were found to reach approximately zero at a lag time
of 0.144 ps). The average temperature in each simulation is
maintained at 298.15 K by a Martyna–Klein–Tuckerman
algorithm41 with a time constant of 96 fs.

The equilibrium density of the MM description of the
solutions is predicted from NPT simulations. The resulting
equilibrium length of each unit cell (reported in Table S.1 in
the ESI†) is employed for all NVT simulations used to compute
DMM-QMG(u) and DMM-QMG(uv). Also reported in Table S.1
(ESI†) is the unit cell determined by NPT simulations for
63 water molecules without any solute, and these para-
meters are used in all NVT simulations used to compute
DMM-QMG(v). The density of each simulation box and the
molar concentration of each box containing a solute are also
reported in Table S.1 (ESI†).

3.5 MM method

All polyatomic solutes are described in the MM method by
harmonic bonding potentials, harmonic angular potentials,
sinusoidal dihedral potentials, and Lennard-Jones interactions.
The parameters which define these potentials are taken from
the generalized Amber force field42 (GAFF) version 1.7, except
in the case of acetonitrile, in which the parameters of Nikitin
and Lyubartsev43 are used. The latter parameters were deter-
mined based on a fit to thermodynamic data for the water–
acetonitrile system, which was necessary due to the inability of
the GAFF parameters to qualitatively reproduce the acetonitrile
potential energy surface.43 The Lennard-Jones parameters
of Vrabec et al.44 are used to describe argon solute, and the
aSPC/Fw force field45 is used to describe water molecules in
aqueous solvent. The latter method is chosen because of its
anharmonic bonding potential and its ability to reproduce a
variety of experimental properties for liquid water with classical
simulations. The Lorentz–Berthelot mixing rules are used for
all Lennard-Jones parameters, and all 1–4 interactions are
scaled by 1/2 and 1/1.2 for Lennard-Jones and electrostatic
interactions, respectively. A cutoff length of 6.0 Å is used for
all Lennard-Jones interactions.

For each polyatomic solute, CM5 charges46 are used for
the description of electrostatic interactions due to the demon-
strated accuracy of resulting predictions of free energies of
aqueous solvation.47 These charges are determined using
CM5PAC48 together with the results of M06-L49 density func-
tional theoretical calculations obtained with the may-cc-pVTZ
basis set50 and the SMD implicit solvation model,51 evaluated
using the Gaussian 09 revision D.0152 software suite. For the
purpose of MM simulations of aqueous solvent, the original
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charges specified for aSPC/Fw are retained. Electrostatic inter-
actions are evaluated with the smooth particle mesh Ewald
method,53 a value of 0.8 for the Ewald convergence parameter,
a real-space cutoff of 9.0 Å, and 29 grid points in each dimen-
sion (for cells that range from 12.1 to 12.8 Å in length).

3.6 QM method

Evaluation of forces on the Born–Oppenheimer potential
energy surface is performed with density functional theory
using the Gaussian and plane waves method (GPW).54,55

The density functional method used is based on the B97M-V39

meta-generalized gradient approximation, which has been
demonstrated to predict accurate energies for nonbonded
complexes: for example, a root-mean-squared error (RMSE) of
1.05 kJ mol�1 40 was found for a chemically diverse database of
benchmark intermolecular binding energies56 and the RMSE
was 1.47 kJ mol�1 39 for a set of benchmark binding energies of
water clusters.57 B97M-V is also notable for its accurate predic-
tions of the geometries of nonbonded complexes.58 In place of
the original VV1059 nonlocal van der Waals functional with
which B97M-V has been optimized, the revised rVV10 func-
tional of Sabatini et al.60 is used in the present study (and
not the recent ‘‘B97M-rV’’ re-optimized rVV10 parameters
of Mardirossian et al.61). LIBXC 3.062 is used for the meta-
generalized gradient evaluation, whereas the default CP2K
implementation is used for the evaluation of the nonlocal
component. The electronic density is described both by the
TZV2P55 atom-centered Gaussian-type basis set and an auxiliary
plane wave basis expanded using a multi-grid method63 with a
cutoff of 280 Ry. Norm-conserving GTH pseudopotentials64

optimized with the PBE functional65 are applied to all atoms.

3.7 Benchmark binding energy calculations

Several 1 : 1 solute–water complexes are also studied with both
the QM and MM methods. To confirm the accuracy of the QM
method for these complexes, CCSD(T)/CBS calculations after
the method of Marshall et al.66 (eqn (12)) are implemented in
Psi4 1.1.67

ECBS = Eaug-cc-pVQZ
SCF + Eaug-cc-pV[TQ]Z

MP2 + dCCSD(T)
MP2 |aug-cc-pVTZ

(12)

3.8 Visualization

All molecular visualizations are produced with the Atomic
Simulation Environment.68

4 Results
4.1 Predictions of MM free energies of solvation

The results for the predictions of DsolvGMM are summarized in
Table 2, and are further decomposed into a Lennard-Jones com-
ponent (part (ii) in Fig. 2), DLJG

MM, and an electrostatic component
(the sum path of parts (i) and (iii) in Fig. 2), DESGMM. The overall
sampling error in these terms (reported in Table 2) is determined
assuming no correlation among the propagated uncertainties of
the hdU/dlil values predicted by each simulation trajectory. The
sampling error assigned to the hdU/dlil value of each trajectory
is a standard deviation computed using the effective number
of independent observations for an autocorrelated dynamical
variable, using the equation of Bayley and Hammersley.69

Among the four solutes in the test set, the DsolvGMM predictions
that are found to be in the best agreement with experiment are
those of argon and acetonitrile. In both of these cases, MM
parameters are used that were previously optimized to solute-
specific experimental data. Our prediction for trans-1,2-dichloro-
ethene, by contrast, deviates from the experimental value by
13.1 kJ mol�1, which is roughly twice the error as the prediction
made by Shivakumar et al.70 with GAFF and AM1 charges (as
reported in Table S.2 in the ESI†). We interpret that this discre-
pancy for trans-1,2-dichloroethene arises due to our use of the
combination of GAFF parameters and CM5 charges, and this is
investigated in more detail in Section 4.3 by way of a comparative
investigation of solute–water interactions using both the MM
method and the higher-quality QM method. Our DsolvG

MM predic-
tion for methanol is in better agreement with the predictions of
Shivakumar et al.; however, our MM prediction for methanol still
deviates substantially from experiment. The disparity in the results
between the solutes for which the MM parameters have been
optimized to solute-specific experimental data (argon and acetoni-
trile) and the solutes for which the MM parameters have been
optimized to both experimental and computational data (methanol
and trans-1,2-dichloroethene) illustrates the need to consider
solute-specific QM corrections to MM predictions of free energies
of aqueous solvation. The average unsigned error in DsolvG

MM,
6.9 kJ mol�1, of the four solutes considered here is comparable to
those reported by Shivakumar et al. for much larger sets of solutes,
where they employed a variety of similar methods.

4.2 Convergence of free energies of model chemistry transfer

The computed values of the free energy of model chemistry transfer
are reported in Table 3 for the aqueous solvent (DMM-QMG(v)), for

Table 2 The Lennard-Jones component, DLJG
MM, electrostatic component, DESGMM, and total free energy of solvation, DsolvG

MM, predicted by the MM
method for 4 test solutes, and the values, DsolvG

exp., given by experiment (kJ mol�1)

Solute DLJG
MM a DESGMM a DsolvGMM a DsolvGexp. b

Argon 9.7 � 0.1 — 9.7 � 0.1 8.38 � 0.04
Methanol 8.4 � 0.2 �18.1 � 0.1 �9.7 � 0.2 �21.3 � 0.2
Acetonitrile 10.9 � 0.1 �28.0 � 0.1 �17.2 � 0.2 �17.7 � 0.1
trans-1,2-Dichloroethene 13.1 � 0.2 �2.47 � 0.02 10.7 � 0.2 �2.36 � 0.02

a Intervals refer to standard deviations computed with the effective number of independent observations.69 b Reproduced from Table 1. Intervals
refer to standard deviations of experimental determinations.
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all four solutes (DMM-QMG(u)), and the corresponding solutions
(DMM-QMG(uv)), as well as the complete DMM-QMG given by
eqn (1). By inspection of Table 3, the quantities DMM-QMG(u),
DMM-QMG(v), and DMM-QMG(uv) exhibit very large magnitudes of
order E105–107 kJ mol�1. Each DMM-QMG term is constructed
from the integration of hdU/dl0il0 (eqn (8)), which is simply the
averaged vertical energy difference between the MM and QM
potential energy surfaces (eqn (7)). The observed large magnitudes
of the DMM-QMG terms (Table 3) therefore arise from the arbitrary
choices of the zeros that are assigned to the MM and QM potential
energy surfaces. However, the fluctuations in dU/dl0 over the
course of the simulations are independent of these choices, and
these energy fluctuations are much smaller in magnitude than
the instantaneous potential energy difference UMM � UQM.
For example, the 9 simulations performed for liquid water
each have standard deviations in their dU/dl0 values of
52–61 kJ mol�1 over the course of each simulation (plots of
the time evolution of dU/dl0 for two different values of l0 are
included in panels (a) and (b) of Fig. S.1 in the ESI†). However,
due to the exhaustive sampling of dU/dl0, the predictions of
DMM-QMG(u), DMM-QMG(v), and DMM-QMG(uv) shown in Table 3
all have estimated sampling uncertainties of r1.1 kJ mol�1,
despite the large fluctuations in instantaneous values of dU/dl0.
As a consequence, the aggregated QM correction to the MM free
energy of solution, DMM-QMDsolvG, is found to be well-converged
within a sampling error of r1.5 kJ mol�1 for all four solutes in the
test set. The assumptions behind this estimate of convergence are
explained here in further detail.

The convergence of the individual DMM-QMG values
depends on the number of discrete values of the coupling
parameter, l0 (equivalent to the number of individually simu-
lated trajectories, nl0), as well as the sampled length of the
molecular dynamics trajectory, tl0, that is applied at each
incremental value of l0. The values of the DMM-QMG(v) integral
and DMM-QMDsolvG terms are converged with respect to nl0 to
within r1.5 kJ mol�1 for values of nl0 = 9 (Fig. 4a and 5a).

The term hdU/dl0il0 has substantial non-linear behavior with
respect to l0 in the computation of the DMM-QMG terms,
although this is difficult to determine from visual inspection
of the thermodynamic integration (Fig. S.3 in the ESI†) due to
the large magnitude of the hdU/dl0il0 terms. For this reason, we
have chosen to visualize the effect of nl0 on the convergence of
the DMM-QMG terms by separating the non-linear contribu-
tions from the linear contributions. Linear approximations are

constructed for the DMM-QMG(u), DMM-QMG(v), and DMM-

QMG(uv) thermodynamic integrations for methanol. These
linear approximations use the hdU/dl0il0 data points at l0 = 0
and l0 = 1 to effectively estimate the hdU/dl0il0 values at all
intermediate points, l*, with residuals, r:

r l�ð Þ ¼ dU

dl0

� �
l0¼l�
�l� dU

dl0

� �
l0¼0
� 1� l�ð Þ dU

dl0

� �
l0¼1

(13)

A mathematical interpretation of these residuals (Fig. 3) is
that they represent the non-linear component of the thermo-
dynamic integration at a given point, l0, and can be integrated
to compute the difference between the DMM-QMG integrals
computed with nl0 = 8 and those computed with nl0 = 2. The
substantial magnitude of the residuals (over 20 kJ mol�1 for
the solvent) is interpreted as arising from the interactions of
solvent molecules described by potential energy surfaces of the
averaged MM and QM model chemistries. The non-linearity of
the DMM-QMG(uv) integral in Fig. 3 is similar enough to the
DMM-QMG(v) integral that it leads to a partial cancellation
of these dependencies that is favorable to the convergence
of DMM-QMDsolvG (which involves taking a difference of
DMM-QMG(uv) and DMM-QMG(v) (eqn (1))) with respect to nl0.
However, the non-linear behaviors are qualitatively different
enough and the dependence of the DMM-QMDsolvG predictions
on nl0 large enough that the consideration of several inter-
mediate l0 values is warranted when integrating between MM
and QM descriptions. The DMM-QMG(u) integrals have a non-
linear dependence which is much smaller than those of the
DMM-QMG(v) and DMM-QMG(uv) integrals.

While the dependencies of DMM-QMG terms on tl0

(Fig. 4b and 5b) appear smaller than those with respect to nl0

(Fig. 4a and 5a), this does not necessarily mean that these
predictions are fully converged with respect to tl0. The high
computational cost of condensed phase DFT calculations limits
the tl0 values that can be used in this study and therefore limits
the exploration of configuration space that can be achieved by
the method. It remains unclear whether these short sampling
times can adequately represent the ergodic limit, even within
our careful estimates of the statistical sampling uncertainty.
However, given that the lifetime of a hydrogen bond in liquid
water is known to be on the order of 1 ps71,72 and orientational
times of the first hydration shell for hydrophobic solutes on the
order of 3 ps,73 a tl0 value of 14.4 ps may be adequate for these

Table 3 Free energies of model chemistry transfer, DMM-QMG, for each isolated solute (u), for the system of 63 aqueous solvent (v) molecules, and for
each solution (uv) of the solute molecule in 63 solvent molecules (ntraj = 9, ttraj = 14.4 ps), as well as the aggregated QM correction to the MM free
energies of solvation, DMM-QMDsolvG (kJ mol�1)

Solute DMM-QMG(u)a DMM-QMG(v)a DMM-QMG(uv)a DMM-QMDsolvGb

Argon �55394.87 �2843127.0 � 1.0 �2898523.0 � 1.1 �1.5 � 1.5
Methanol �63141.99 � 0.04 �2843127.0 � 1.0 �2906283.0 � 0.9 �14.1 � 1.3
Acetonitrile �60354.64 � 0.10 �2843127.0 � 1.0 �2903461.4 � 0.8 20.2 � 1.3
trans-1,2-Dichloroethene �111511.35 � 0.04 �2843127.0 � 1.0 �2954638.7 � 0.7 �0.3 � 1.2

a Intervals refer to standard deviations computed with the effective number of independent observations.69 b Computed using eqn (1). Intervals
refer to standard deviations computed with the effective number of independent observations.69
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non-ionic solutes. Within the bounds of these assumptions, the
numerical precision of the DMM-QMDsolvG predictions that can
be achieved is notable.

4.3 Predictions of QM free energies of solvation

The QM predictions of the aqueous free energies of solvation
are calculated from eqn (2) and reported in Table 4 together
with the MM predictions and experimental values. For argon
and methanol, the inclusion of the QM correction significantly
improves agreement with experiment compared to the MM
prediction alone. However the QM correction worsens agree-
ment with experiment for acetonitrile and has little effect on
the MM prediction for trans-1,2-dichloroethene. Each of these
cases is investigated in turn. As part of these investigations, the
potential energy surface of each solute interacting with a single
water molecule in the gas phase is explored with the QM
method. These QM calculations are implemented with the
same unit cell as the corresponding model chemistry transfer
simulations (Table S.1 of the ESI†). The binding energy of each
local minimum, DbindE, is defined as the difference in the
potential energy of the bound conformation and the potential
energy of the two molecules at infinite separation, excluding
the zero-point vibrational energy and assuming a temperature
of 0 K. The QM binding energies are compared to the binding
energies predicted by the CCSD(T)/CBS method at the QM
geometries, as well as those of the MM method. The MM
binding energies use MM-optimized geometries in cases where
the MM potential energy surface has an analogous local mini-
mum, and the QM geometries in all other cases.

5 Discussion
5.1 Argon

The aqueous solvation of argon is dominated by the hydrophobic
effect, so much so that it has a positive experimental free energy of
solvation. Interestingly, the pair correlation functions between the
argon atom and the solvent oxygen and hydrogen atoms in Fig. 6
suggest that the solvent around argon may be slightly more
structured with the QM method than it is with the MM method.
This might be expected to result in a positive DMM-QMDsolvG value
rather than the observed value of �1.5 � 1.5 kJ mol�1. However,
the contribution of the dispersion interactions between argon and
the solvent, which lead to a lowering of the free energy of
solvation, must also be considered. The potential energy surface
of gas phase argon complexed with a single water molecule is
found to have a single local minimum on both the QM and MM
potential energy surfaces. The QM method predicts a binding
energy (Table 5) which is 0.9 kJ mol�1 lower than the MM method.

Fig. 3 The non-linear components, r(l*), of the DMM-QMG thermo-
dynamic integration of methanol, (u); 63 solvent molecules, (v); and the
combined methanol and solvent, (uv), computed using eqn (13).

Fig. 4 Convergence of DMM-QMG(v) with respect to (a) the number of
trajectories, nl0, included in the thermodynamic integration (tl0 = 14.4 ps)
and (b) the length of simulated dynamics, tl0, from each trajectory that
is included (nl0 = 9). Intervals refer to propagated standard deviations
computed with the effective number of independent observations (see
Section 4.1 for details).

Fig. 5 Convergence of the four DMM-QMDsolvG predictions with respect
to (a) the number of trajectories, nl0, included in the thermodynamic
integration (tl0 = 14.4 ps) and (b) the length of simulated dynamics, tl0,
from each trajectory that is included (nl0 = 9). Intervals refer to propagated
standard deviations computed with the effective number of independent
observations (see Section 4.1 for details).

Table 4 Comparison of MM predictions, QM predictions (eqn (2)), and
experimental values of the free energies of aqueous solvation for four test
solutes (kJ mol�1)

Solute DsolvGMM a DsolvGQM b DsolvGexp. c

Argon 9.7 � 0.1 8.2 � 1.5 8.38 � 0.04
Methanol �9.7 � 0.2 �23.8 � 1.4 �21.3 � 0.2
Acetonitrile �17.2 � 0.2 3.0 � 1.3 �17.7 � 0.1
trans-1,2-Dichloroethene 10.7 � 0.2 10.4 � 1.2 �2.36 � 0.02

a Reproduced from Table 2. b Calculated using eqn (2). c Reproduced
from Table 1.
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This suggests that the dominant effect of the thermodynamic
integration of the model chemistry transfer simulations was
actually to correct for the slight underbinding of argon with water
predicted by the MM method rather than to correct the ability of
the MM method to model the hydrophobic effect.

5.2 Methanol

The aqueous solvation of methanol is dominated by the hydrogen
bonding. This is also true of the potential energy surface of a 1 : 1
complex of methanol with a single water molecule, which is found
to have three local minima: one conformation (1) where methanol
is accepting a hydrogen bond, another conformation (2) where
methanol is donating a hydrogen bond, and a third conformation
(3), significantly higher in energy than the first two, where the
solvent molecule is closest to the methyl group of methanol.
Whereas the MM method is in good agreement with the QM
method for the two hydrogen bonding conformations, it predicts
a repulsive interaction with no local minimum for conformation
(3) where the QM methods predicts a slightly attractive inter-
action. The DFT-based QM method is found to be in good
agreement with the more rigorous CBS calculations for all three
conformations (Fig. 7).

The prediction of a negative DMM-QMDsolvG correction for
methanol (�14.1 � 1.3 kJ mol�1) is interesting considering that
the MM method actually slightly overbinds the hydrogen bond-
ing conformations. Pair correlation functions from initial and
final model chemistry transfer simulations of methanol and
the 63 solvent molecules (Fig. 8) suggest that the negative
DMM-QMDsolvG term may be a result of a QM solvent shell
which is closer to the solute than the MM solvent shell. This is
particularly evident in the pair correlation functions between

the methanol carbon atom and solvent oxygen atoms (Fig. 8c),
which show significantly increased structure in the QM (l0 = 1)
simulation. It is likely that this increased solvent structure is
due, in part, to interactions similar to the one in conformation
(3), which the MM incorrectly predicts to be repulsive and
which the QM method correctly predicts to be attractive.
It therefore appears that the thermodynamic integration of
the model chemistry transfer simulations does have an effect
on the solvent cavity in the case of methanol, but that this effect
has more to do with the methyl group than it does with
hydrogen bonding. It is curious that there would be such a large
DMM-QMDsolvG correction associated with the MM and QM
descriptions of a hydrophobic functional group when there appears
to be no significant correction to the hydrophobic effect in argon;
we suspect that this is due to the particular choices made for the
description of the solutes in the MM method.

5.3 Acetonitrile

Like methanol, the experimental free energy of solvation of
acetonitrile is highly negative due to hydrogen bonding,
although acetonitrile can only accept a hydrogen bond while
methanol may also donate one. Also, acetonitrile contains
p-bonding, whereas methanol contains only s-bonds. Three
unique local minima are found on the potential energy surface
of the QM acetonitrile–water complex (Fig. 9): one configu-
ration in which acetonitrile acts as a hydrogen bond acceptor
(1), one configuration which features an electrostatic inter-
action between the nitrile p-cloud and the water molecule (2),
and one configuration which features an electrostatic interaction

Fig. 6 Pair correlation functions of (a) argon atoms with solvent hydrogen
atoms and (b) argon atoms with solvent oxygen atoms during the initial,
fully MM (l0 = 0) and final, fully QM (l0 = 1) model chemistry transfer
simulations of methanol with 63 water molecules.

Table 5 Binding energies (kJ mol�1) of the argon–water complex

Method DbindE

MMa �0.8
QMb �1.7
CBSc �1.2

a See Section 3.5 for details. b B97M-rV/TZV2P. c CCSD(T)/CBS//B97M-
rV/TZV2P.

Fig. 7 Local minima of the B97M-rV/TZV2P potential energy surface of
the methanol–water complex and corresponding QM and MM binding
energies (kJ mol�1). MM binding energies are computed with MM
optimized geometries, except where noted with an asterisk.
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between the electron-deficient methyl group and the water
molecule (3).

The MM method predicts stronger binding to water than
does the QM method except in conformation (2), which features
p-bonding. Unlike the MM models that are used for methanol
and trans-1,2-dichloroethene, which are parameterized to fit
a wide range of data, the Nikitin–Lyubartsev model for aceto-
nitrile was parameterized to achieve agreement with experi-
mental data specific to the water–acetonitrile system, and so
the agreement of DsolvGMM with experiment is not surprising.
However, the MM method relies on electrostatic point charges,
and therefore it cannot model p-bonding. The model appar-
ently overbinds conformations 1 and 3 in order to compensate
for the unphysical underbinding of conformation 2 that cannot
be avoided due to the limitations of the functional form of the
MM model. Inspection of the pair correlation functions shows
that the cavity reorganization is substantial during the thermo-
dynamic integration from the MM to QM potential energy
surface (Fig. 10). The pair correlation functions between the solute
nitrogen and solvent hydrogen atoms clearly show a decrease in
the frequency and an increase spatial length of hydrogen bonding
interactions in the QM potential energy surface relative to the MM
potential energy surface, which is consistent with our analysis
of conformation (1) of the acetonitrile–water potential energy
surface. Conversely, the pair correlation functions between the
solute hydrogen and solvent oxygen atoms show both an increase
in close interactions in QM simulations relative to MM simulations,
which is probably due to increased p-bonding interactions such as
in conformation (2), but they also exhibit a decrease in interactions
at around 3 Å interatomic distance, most likely due to less favorable
interactions between solvent molecules and the methyl group of
acetonitrile such as in conformation (3).

The DsolvG
MM prediction for acetonitrile is in good agreement

with experiment. One might expect the solvent reorganization
effects described above to cancel each other out, but in fact
the QM prediction is 20.7 kJ mol�1 higher than experiment.
Inspection of the pair correlation functions of the intermediate,

Fig. 8 Pair correlation functions of (a) solute oxygen atoms with solvent
hydrogen atoms, (b) solute (hydroxyl) hydrogen atoms with solvent oxygen
atoms, and (c) solute carbon atoms with solvent oxygen atoms during the
initial, fully MM (l0 = 0) and final, fully QM (l0 = 1) model chemistry transfer
simulations of methanol with 63 water molecules.

Fig. 9 Local minima of the QM potential energy surface of the aceto-
nitrile–water complex with corresponding QM and MM binding energies
(kJ mol�1). MM binding energies are computed with MM optimized
geometries, except where noted with an asterisk.

Fig. 10 Pair correlation functions of (a) solute nitrogen atoms with
solvent hydrogen atoms and (b) solute hydrogen atoms with solvent
oxygen atoms during the initial, fully MM (l0 = 0) and final, fully QM
(l0 = 1) model chemistry transfer simulations of acetonitrile with 63 water
molecules. The nitrogen–hydrogen bond lengths of the MM and QM
geometries of conformation (1) in Fig. 9 are marked in (a). The hydro-
gen–oxygen bond lengths of the MM and QM geometries of conformation
(3) as well as the QM geometry of conformation (2) are marked in (b).
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mixed-Hamiltonian simulations (Fig. 11) reveal that while the
weakening of the hydrogen bonding interactions happens gradu-
ally over the course of the nine simulations, the formation of the
energetically favorable p-interactions do not form until the final,
fully QM simulation. We suspect that this is due to the MM
component of the mixed-Hamiltonian simulations predicting
repulsive energies for the types of geometries that are sampled in
the final, fully QM simulation. Even for l0 = 0.875, the relatively
small contribution that the MM method makes to the Hamiltonian
could be enough to prevent the geometries from being sampled if
the MM method predicts them to be sufficiently high in energy.
This is similar to the problem that occurs in the linear interpolation
of two MM potentials with thermodynamic integration,6,32,33 where
intermediate (0 o l o 1) trajectories can sometimes sample con-
formational space that is near equilibrium in one MM potential but
highly repulsive in the other MM potential. Although we have found
no evidence for ‘‘singularities’’ (that is, predictions of sharp increases
in the intermediate potential and/or numerical instabilities), it does
appear that the presence of any MM character to the Hamiltonian at
all prevents effective sampling of important interactions.

An exploration of the non-linear components to the thermo-
dynamic integration of the combined acetonitrile and solvent
simulations (uv) shows large contributions from the later
mixed-Hamiltonian simulations such as l* = 0.625, 0.75, and
0.875 (Fig. 12). These are simulations with mostly QM Hamiltonians,

and they are also simulations in which the solvent has restructured
to allow for less hydrogen bonding than exists in the purely MM
simulation, but has not yet restructured to allow for attractive
interactions between solvent molecules and the p-cloud, such as
exist in conformation (2) in Fig. 9. The high r(l*) values could
therefore be interpreted as a consequence of the failure to sample
geometries containing attractive interactions between the solvent
and the p-cloud. The high r(l*) values also mean that these simula-
tions make anomalously large and positive contributions to the
DMM-QMG(uv) term, and thus the final DsolvG

QM prediction.

5.4 trans-1,2-Dichloroethene

The experimental aqueous solvation free energy of trans-1,2-
dichloroethene is slightly negative, presumably due to moderate
electrostatic interactions with the solvent. However, the aniso-
tropic nature of the electronic density around the carbon and
chlorine atoms due to p-density and the s hole effect, respectively,
pose a challenge to the computational modeling of these electro-
static interactions with the solvent. The potential energy surface of
a 1 : 1 complex of trans-1,2-dichloroethene with a single water
molecule is found to have four unique local minima (Fig. 13): two
(1,2) configurations featuring electrostatic interactions between
both a hydrogen and chlorine from trans-1,2-dichloroethene and
the water molecule, one (3) configuration featuring an electro-
static interaction between the p-cloud and the water molecule,
and one (4) configuration which features a weak halogen bond.

The QM method predicts stronger binding than the MM
method in all of the local minimum energy conformations
considered; the QM results are further supported by the CBS
calculations (Fig. 13). The QM results also confirm that the MM

Fig. 11 Pair correlation functions of (a) solute nitrogen atoms with solvent
hydrogen atoms and (b) solute hydrogen atoms with solvent oxygen atoms
during the initial, fully MM (l0 = 0), final, fully QM (l0 = 1), and the seven
mixed-Hamiltonian model chemistry transfer simulations of acetonitrile
with 63 water molecules.

Fig. 12 The non-linear components, r(l*), of the DMM-QMG thermo-
dynamic integration of acetonitrile, (u); 63 solvent molecules, (v); and the
combined acetonitrile and solvent system, (uv), computed using eqn (13).

Fig. 13 Local minima of the B97M-rV/TZV2P potential energy surface of
the trans-1,2-dichloroethene-water complex and corresponding QM and
MM binding energies (kJ mol�1). MM binding energies are computed with
MM optimized geometries, except where noted with an asterisk.
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method predicts unphysical repulsive interactions for con-
formations where the QM method predicts weakly attractive
p-bonds and halogen bonds. This is in agreement with the
findings of El Hage et al.,74 who studied the effect of including
atomic multipole expansions into force field descriptions of
halogenated aromatics and found that including quadrupole
terms on both the halogen atom and neighboring carbon atoms
is necessary for obtaining accurate solvation free energies and a
correct solvation shell structure. To test whether or not these
qualitative differences in the MM and QM potential energy
surfaces may have affected the structure of the solvent around
the solute, we investigate pair correlation functions, g(r),
between solute and solvent atoms over the course of selected
model chemistry transfer simulations (Fig. 14).

The chlorine–oxygen pair correlation function from the QM
simulation (Fig. 14a) suggests an increase in the ordering of
the solvent around the chlorine atoms, compared to the MM
simulation. The carbon–oxygen and carbon–hydrogen correla-
tion functions (Fig. 14b and c) possibly also suggest an increase
in the ordering of the solvent above the plane of the solute,
albeit a more subtle one. This is consistent with our analysis of
the solute–water complex potential energy surface; the difference
between the energies predicted by the QM and MM methods is
greater for the halogen-bonding conformation (4) than it is for the

conformation that includes a p-interaction (3). However, the
DsolvG

QM prediction for trans-1,2-dichloroethene is higher than
the experimental value by 13 kJ mol�1 (Table 4) despite the
evidence that the QM potential energy surface is accurate and
the solvent has undergone reorganization to reflect the qualitative
differences in the potential energy surfaces. To explain this, we
investigate the non-linear components of the model chemistry
transfer thermodynamic integration, r(l*) (Fig. 15).

The r(l*) values for the combined trans-1,2-dichloroethene
and solvent simulations (uv) are substantially larger than those
of the well-behaved example of methanol (Fig. 3). Especially
notable are those of the four final mixed-Hamiltonian simula-
tions, l* = 0.5, 0.625, 0.75, and 0.875. The solute–solvent
carbon–oxygen and carbon–hydrogen pair correlation functions
from the mixed-Hamiltonian simulations (Fig. 16) show an
interesting feature of these simulations: the solvent appears
to get even closer to the carbon atoms of the solute during these
four final mixed-Hamiltonian simulations than it does during
the final, fully QM simulation. One possible explanation for
this is that, while the final QM simulation arrives at a solvent
structure where the underbinding of MM description of the
solute and the solvent is corrected, the intermediate simulations
arrive a solvent structure which is overcorrected. In theory,
sufficiently long sampling of these intermediate states should
resolve this issue; however, the practical result of the unphysical

Fig. 14 Pair correlation functions of (a) solute chlorine atoms with solvent
oxygen atoms, (b) solute carbon atoms with solvent oxygen atoms, and
(c) solute carbon atoms with solvent hydrogen atoms during the initial,
fully MM (l0 = 0) and final, fully QM (l0 = 1) model chemistry transfer
simulations of trans-1,2-dichloroethene with 63 water molecules.
The chlorine–oxygen bond lengths of the MM and QM geometries of
conformation (1) and the QM geometry of conformation (4) in Fig. 13 are
marked in (a). The carbon–oxygen and carbon–hydrogen bond lengths of
the MM and QM geometries of conformation (2) and the QM geometries
of conformation (3) are marked in (b) and (c), respectfully.

Fig. 15 The non-linear components, r(l*), of the DMM-QMG thermo-
dynamic integration of gas phase trans-1,2-dichloroethene, (u); 63 solvent
molecules, (v); and the combined trans-1,2-dichloroethene and solvent
system, (uv), computed using eqn (13).

Fig. 16 Pair correlation functions of solute carbon atoms with (a) solvent
oxygen atoms and (b) solvent hydrogen atoms during the initial, fully MM
(l0 = 0), final, fully QM (l0 = 1), and the seven mixed-Hamiltonian model
chemistry transfer simulations of trans-1,2-dichloroethene with 63 water
molecules.
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MM model seems to be that even with the computationally
intensive simulation lengths used here, the sampling of these
model chemistry transfer simulations is biased towards geo-
metries with relatively high short-range repulsive forces which,
in turn, results in an incorrectly high prediction of the free energy
of solvation.

6 Conclusions

The QM corrections to MM free energies of solvation that we
propose do not converge to the pertinent experimental free
energies of solvation in two cases, acetonitrile and trans-1,2-
dichloroethene. Moreover, the convergence of these QM correc-
tions with respect to the number of intermediate states or the
length of simulated dynamics (Fig. 5) does not suggest that a
moderate increase in either quantity would be sufficient to
achieve convergence with experiment. In both of these cases,
the underlying MM methods which are being corrected do not
fully account for atomic-level anisotropy of the electrostatic
potential. However, we also provide two cases where the MM
method does give a good qualitative description of solute–
solvent interactions: argon and methanol. In both cases, the
addition of the QM correction improves agreement with experiment.
Interestingly, the QM correction for methanol is substantial; the
lack of quantitative accuracy of the MM description of methanol
seems to be unimportant, as it describes qualitatively correct
solute–solvent interactions. However, in the case of acetonitrile,
where the MM method accurately predicts the experimental free
energy of solvation by means of unphysical solute–solvent inter-
actions, the QM correction does not converge. As the use of
methods such as soft core potentials, which expedite the con-
vergence of the thermodynamic integration between two quali-
tatively different MM descriptions, are not possible for the
thermodynamic integration between a MM method and a
QM method, we instead recommend the exclusive use of MM
methods which give a qualitatively correct description of all
solute–solvent weak interactions for the thermodynamic integra-
tion between MM and QM methods.

Another possible limitation of the proposed methodology is
that ab initio methods which accurately model Born–Oppenheimer
surfaces typically can not be expected to accurately predict ensem-
ble properties without the use of quantum nuclear methods.37,75

The quantitative agreement with experiment that we achieve with
our free energy of solvation predictions for argon and methanol
suggest that the use of QM methods without a quantum treatment
of nuclei, but with the experimental density enforced, is perhaps
an acceptable compromise between accuracy and computational
efficiency for free energy of solvation predictions. However, the unit
cells used here for the QM correction of the solvent–solute system
were taken from NPT simulations with the MM method, which
again underscores the importance of the choice of MM method for
achieving quantitative accuracy with the method we propose.

The small number of solvent molecules in our implementation
should also be noted. Parameswaran and Mobley76 have found
that the number of solvent molecules have a negligible effect on

the free energy of solvation predictions of non-ionic solutes.
Although the smallest simulation box studied by Parameswaran
and Mobley (18 Å) is larger than the simulation boxes used in our
implementation (all less than 13 Å), 63 solvent molecules is
sufficient for two solvation shells with the solutes considered
here, and so we suspect any box size effects in our present
implementation are minor. However, a much larger number of
solvent molecules would be necessary for the consideration of
ionic solutes with this method.
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