There are no timings for the gas phase run but it looks like the pw operations are dominating - they don't really care how many atoms are involved just the box size (you have nearly 8x more grid points). With the wavelet poisson solver you only need around 5A space around the system to be OK but having to be cubic means you are limited by the largest dimension of your molecule. If it is very much bigger in one direction you might be better with analytic poisson solver and a non-cubic box.<div><br></div><div>Matt<br><br></div><div class="gmail_quote"><div dir="auto" class="gmail_attr">On Tuesday, September 22, 2020 at 3:14:58 PM UTC+1 pier...@gmail.com wrote:<br/></div><blockquote class="gmail_quote" style="margin: 0 0 0 0.8ex; border-left: 1px solid rgb(204, 204, 204); padding-left: 1ex;">
  
    
  
  <div>
    Dear Marcella,<br>
    <br>
    Please find as attached document two output files. The first
    aco-mo.inp contains the results for a crystal made of 78 atoms. This
    is a normal condensed phase calculation. The second opt.out is for
    the gas phase system made of 75 atoms. The systems have nothing in
    common.<br>
    <br>
    I would like to attract your attention that the grid cutoffs of
    aco-mo.inp are much larger than those of opt.inp, and yet aco-mo.inp
    is much faster than opt.inp.<br>
    <br>
    I am also running the gas phase system on a single node of a cluster
    with 40 MPI tasks. The calculation is obviously faster than on my
    workstation but still frustratingly slow.<br>
    <br>
    Regards,<br>
    Pierre</div><div><br>
    <br>
    <div>On 22/09/2020 14:00, Marcella Iannuzzi
      wrote:<br>
    </div>
    </div><div><blockquote type="cite">
      
      Dear Pierre, 
      <div><br>
      </div>
      <div>from the timings in the output you should be able to
        determine where the calculation is spending most of the time and
        compare to the condensed matter calculation. Most probably OMP
        is not the most efficient in this case to parallelise. Have you
        tried with 8 tasks instead. </div>
      <div>Regards</div>
      <div>Marcella</div>
      <div><br>
        <br>
      </div>
      <div class="gmail_quote">
        <div dir="auto" class="gmail_attr">On Tuesday, September 22,
          2020 at 1:53:36 PM UTC+2 <a href data-email-masked rel="nofollow">pier...@gmail.com</a> wrote:<br>
        </div>
        <blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
          <div> Hi Marcella,<br>
            <br>
            I am trying to run the calculation on my workstation with
            just OMP (8 threads). This usually works for condensed phase
            with a two hundred atoms so I thought it would be fine for
            just 75 atoms. Anyway, I reduced the cutoffs and it seems to
            be helping a lot but it is still slow and require a lot of
            memory. Please find as attached document the input file I am
            using.<br>
            <br>
            Regards,<br>
            Pierre</div>
          <div><br>
            <br>
            <div>On 22/09/2020 11:06, Marcella Iannuzzi wrote:<br>
            </div>
          </div>
          <div>
            <blockquote type="cite"> Dear Pierre, 
              <div><br>
              </div>
              <div>Without additional information, like input, output,
                scaling with the number of processors ..., </div>
              <div>it is not possible fo provide any help.</div>
              <div>Regards</div>
              <div>Marcella</div>
              <div><br>
                <br>
              </div>
              <div class="gmail_quote">
                <div dir="auto" class="gmail_attr">On Monday, September
                  21, 2020 at 1:09:03 PM UTC+2 <a rel="nofollow">pier...@gmail.com</a>
                  wrote:<br>
                </div>
                <blockquote class="gmail_quote" style="margin:0 0 0 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">Dear CP2K users,
                  <div><br>
                  </div>
                  <div>I would like to know how to perform a gas phase
                    calculation with CP2K. I tried to follow some of the
                    examples available in the tutorials but they lead to
                    very slow and heavy calculations for a system with
                    only 75 atoms.</div>
                  <div><br>
                  </div>
                  <div>I used wavelet for the Poisson solver, I set
                    periodic none for both the solver and the cell. The
                    cell is cubic with a size of 26.250 A. I am using
                    DFT (PBE) with OT. Should the number of grid be
                    changed compared to a condensed phase? What about
                    the cutoffs?</div>
                  <div><br>
                  </div>
                  <div>Alternatively, I tried the periodic approach with
                    a larger cell so that the molecule "does not
                    interact" with its periodic image .Yet again, the
                    calculation is extremely demanding in terms of
                    memory which makes the OS kill the job.</div>
                  <div><br>
                  </div>
                  <div>Is there a solution to these problems?<br>
                  </div>
                  <div><br>
                  </div>
                  <div>Regards,</div>
                  <div>Pierre</div>
                </blockquote>
              </div>
            </blockquote>
          </div>
          <div>
            <blockquote type="cite"> -- <br>
              You received this message because you are subscribed to
              the Google Groups "cp2k" group.<br>
              To unsubscribe from this group and stop receiving emails
              from it, send an email to <a rel="nofollow">cp...@googlegroups.com</a>.<br>
              To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/7e7000c8-68b2-4542-b757-450714178594n%40googlegroups.com?utm_medium=email&utm_source=footer" rel="nofollow" target="_blank" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/d/msgid/cp2k/7e7000c8-68b2-4542-b757-450714178594n%2540googlegroups.com?utm_medium%3Demail%26utm_source%3Dfooter&source=gmail&ust=1600873802046000&usg=AFQjCNFZHnjRDY5Olnmm-___lJOFP90aPQ">https://groups.google.com/d/msgid/cp2k/7e7000c8-68b2-4542-b757-450714178594n%40googlegroups.com</a>.<br>
            </blockquote>
            <br>
            <pre cols="72">-- 
Dr Pierre Cazade, PhD
AD3-023, Bernal Institute,
University of Limerick,
Plassey Park Road,
Castletroy, co. Limerick,
Ireland</pre>
          </div>
        </blockquote>
      </div>
      -- <br>
      You received this message because you are subscribed to the Google
      Groups "cp2k" group.<br>
      To unsubscribe from this group and stop receiving emails from it,
      send an email to <a href data-email-masked rel="nofollow">cp...@googlegroups.com</a>.<br></blockquote></div><div><blockquote type="cite">
      To view this discussion on the web visit <a href="https://groups.google.com/d/msgid/cp2k/afec8cd6-9834-4e05-bdee-3637cb366dd2n%40googlegroups.com?utm_medium=email&utm_source=footer" target="_blank" rel="nofollow" data-saferedirecturl="https://www.google.com/url?hl=en&q=https://groups.google.com/d/msgid/cp2k/afec8cd6-9834-4e05-bdee-3637cb366dd2n%2540googlegroups.com?utm_medium%3Demail%26utm_source%3Dfooter&source=gmail&ust=1600873802046000&usg=AFQjCNGFkhN99dBZs0n-2If0dy-SUocahQ">https://groups.google.com/d/msgid/cp2k/afec8cd6-9834-4e05-bdee-3637cb366dd2n%40googlegroups.com</a>.<br>
    </blockquote></div><div>
    <br>
    <pre cols="72">-- 
Dr Pierre Cazade, PhD
AD3-023, Bernal Institute,
University of Limerick,
Plassey Park Road,
Castletroy, co. Limerick,
Ireland</pre>
  </div></blockquote></div>