Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

SUPPORTING INFORMATION for: First principles Monte Carlo simulations of unary and binary adsorption: CO₂, N₂, and H₂O in Mg-MOF-74

Evgenii O. Fetisov¹, Mansi S. Shah², Jeffrey R. Long^{3,4}, Michael Tsapatsis², and J. Ilja Siepmann^{*1,2}

¹Department of Chemistry and Chemical Theory Center, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA ²Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA

 $^{3}\mathrm{Department}$ of Chemistry, University of California Berkeley, California 94720, USA

⁴Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

 $[*] Corresponding \ author: \ siepmann@umn.edu$

S1. Simulation details

All simulations are performed using the Monte Carlo (MC) modules¹⁻⁴ available in the CP2K software suite.⁵ The potential energy of a configuration (defined by the positions of the nuclei) is calculated using Kohn–Sham density functional theory (KS-DFT) with the PBE density functional⁶ along with the D3 dispersion correction of Grimme,⁷ the double- ζ basis set optimized for molecular systems,⁸ the GTH pseudopotentials,^{9,10} and a plane wave cutoff of 600 Ry. The sampling of the Brillouin zone is done only at the Γ -point.

The Mg-MOF-74 sorbent is represented by a $1 \times 1 \times 2$ supercell with a total of 324 atoms and with a periodic simulation box with cell parameters of a = b = 26.136 Å, c = 6.942 Å, $\alpha = \beta = 90^{\circ}$, and $\gamma = 120^{\circ}$. Additionally, the system contains 64 sorbate molecules of each type that can distribute between the simulation boxes.

The FPMC simulations are carried out in the NpT-Gibbs ensemble¹¹ at T = 313 K. To reduce the computational cost, the classical partition function of the system is used to describe the system (i.e., nuclear quantum effects are not considered). Several different Monte Carlo moves are employed. In order to efficiently sample concerted motion of the framework and sorbate atoms, a hybrid Monte Carlo (HMC) move is used.¹² During each HMC move, a short microcanonical molecular dynamics (MD) trajectory is launched (20 time steps, each integrating the equation of motion for 0.25 fs), and the MD sequence is accepted using the conventional MC acceptance rule. The overall distribution of MC moves is as follows: 25% of molecule translations, 15% of molecule rotations (both moves only in the sorbent phase), 5% of atom displacements, 30% of HMC moves, and 25% of configurational-bias molecule transfer moves^{13,14} with 64 trial insertions per move. Maximum displacements for translational and rotational moves were adjusted to yield 40% acceptance rates.

For each state point, 16 independent simulations are carried out. Each simulation consists of at least 4,000 MC moves for equilibration and at least 6,000 MC moves for production. The standard errors of the mean in the computed loadings are determined from the independent simulations.

IAST data are generated using the pyIAST package. $^{\rm 15}$

S2. Numerical data for unary sorption isotherms

$p_{\rm CO_2}$	$Q_{\rm CO_2}$	p_{N_2}	$Q_{\mathrm{N_2}}$	$p_{\mathrm{H_2O}}$	$Q_{\mathrm{H_2O}}$
[bar]	[molec/uc]	[bar]	[molec/uc]	[mbar]	[molec/uc]
0.01	0.8 ± 0.4	0.01	0.042 ± 0.015	0.1	5.5 ± 1.5
0.1	12.3 ± 0.7	0.1	0.34 ± 0.11	1.0	13 ± 3
0.5	16.7 ± 0.6	0.5	0.96 ± 0.12	10	51 ± 5
1.0	18.4 ± 0.8	1.0	1.71 ± 0.08	20	57 ± 4

Table S1: Calculated loadings in Mg-MOF-74 at different pressures. Uncertainties are provided as the standard error of the mean in.

S3. Input files for the FPMC simulation in CP2K

All simulations use the same overall energy routine (section &FORCE_EVAL). It should be noted that each atom type in the Mg-MOF-74 (H, C, O, and Mg) is represented as a separate molecule kind in the course of the MC simulations and therefore requires its own topology file and MC parameters, e.g., move probabilities. An example of the &FORCE_EVAL section is given here.

&FORCE_EVAL METHOD QS &DFT BASIS_SET_FILE_NAME BASIS_MOLOPT POTENTIAL_FILE_NAME GTH_POTENTIALS &MGRID CUTOFF 600 NGRIDS 5 &END &QS EXTRAPOLATION USE_PREV_WF &END QS &SCF EPS_SCF 1.0E-6 SCF_GUESS RESTART MAX_SCF 20 &OUTER_SCF EPS_SCF 1.0E-6 MAX_SCF 10 &END OUTER_SCF &OT MINIMIZER DIIS PRECONDITIONER FULL_KINETIC &END &END &XC &XC_FUNCTIONAL PBE &END &VDW_POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR_POTENTIAL TYPE DFTD3 REFERENCE_C9_TERM .TRUE. LONG_RANGE_CORRECTION .TRUE. PARAMETER_FILE_NAME dftd3.DAT REFERENCE_FUNCTIONAL PBE R_CUTOFF [angstrom] 10.0 EPS_CN 1.0E-6 &END PAIR_POTENTIAL &END VDW_POTENTIAL &END XC &END

 $\& {\rm SUBSYS}$

&CELL ABC 26.136 26.136 13.884 ALPHA_BETA_GAMMA 90.0 90.0 120.0 &END CELL &COORD (MOF coordinates are here) &END COORD &KIND H BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q1 &END KIND &KIND O BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q6 &END KIND &KIND C BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q4 &END KIND &KIND Mg BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q10 &END KIND &KIND N BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q5 &END KIND &KIND CC BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q4 ELEMENT C &END KIND &KIND OO BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q6 ELEMENT O &END KIND &KIND OW BASIS_SET DZVP-MOLOPT-SR-GTH POTENTIAL GTH-PBE-q6 ELEMENT O &END KIND &KIND HW BASIS_SET DZVP-MOLOPT-SR-GTH

POTENTIAL GTH-PBE-q1 ELEMENT H &END KIND &TOPOLOGY CONNECTIVITY MOL_SET &MOL_SET &MOLECULE NMOL 36 CONN_FILE_NAME topology_fist_Mg.psf &END &MOLECULE NMOL 108CONN_FILE_NAME topology_fist_O.psf &END &MOLECULE NMOL 144 CONN_FILE_NAME topology_fist_C.psf &END &MOLECULE NMOL 36 CONN_FILE_NAME topology_fist_H.psf &END &MOLECULE NMOL 0 CONN_FILE_NAME topology_fist_N2.psf &END &MOLECULE NMOL 0 CONN_FILE_NAME topology_fist_CO2.psf &END &MOLECULE NMOL 0 CONN_FILE_NAME topology_fist_H2O.psf &END &END &END &END SUBSYS &END FORCE_EVAL

The &MOTION section of the input file is similar to other GEMC simulation in CP2K with the addition of two new keywords: LIDEAL and PRESSURE_IG. Logical LIDEAL, if set to **yes** (true), indicates that the second box is treated as ideal with pressures for each molecule type specified by PRESSURE_IG (in bar). An example for a binary CO_2-H_2O mixture is given here.

&MOTION MC ENSEMBLE GEMC_NVT **TEMPERATURE 313.0 IPRINT** 1 LBIAS yes LSTOP no LIDEAL yes PRESSURE_IG 0.0 0.0 0.0 0.0 0.0 0.15 0.001 NMOVES 8 NSWAPMOVES 64 **NSTEP 10000** PRESSURE 1.013 **RESTART** yes BOX2_FILE_NAME box2.inp RESTART_FILE_NAME mc_restart_1 ETA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 VIRIAL_TEMPS 300.0 &MOVE_PROBABILITIES PMVOLUME 0.0 PMSWAP 0.25 PMHMC 0.55 PMTRAION 0.11 PMTRANS 0.67 PMAVBMC 0.0 &MOL_PROBABILITIES PMAVBMC_MOL 0.0 0.0 0.0 0.0 0.0 0.0 1.0 PMSWAP_MOL 0.0 0.0 0.0 0.0 0.0 0.5 1.0 PMTRAION_MOL 0.0 0.0 0.0 0.0 0.0 0.5 1.0 PMTRANS_MOL 0.0 0.0 0.0 0.0 0.0 0.5 1.0 PMROT_MOL 0.0 0.0 0.0 0.0 0.0 0.5 1.0 &END MOL_PROBABILITIES &BOX_PROBABILITIES PMVOL_BOX 1.0 PMHMC_BOX 1.0 &END BOX_PROBABILITIES &END MOVE_PROBABILITIES &MOVE_UPDATES

IUPTRANS 10000 IUPVOLUME 10000 &END MOVE_UPDATES &MAX_DISPLACEMENTS &MOL_DISPLACEMENTS RMDIHEDRAL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 RMANGLE 0.0 0.0 0.0 0.0 0.0 0.15 0.15 RMBOND 0.0 0.0 0.0 0.0 0.0 0.1 0.1 RMROT 0.0 0.0 0.0 0.0 0.0 15.0 15.0 RMTRANS 0.0 0.0 0.0 0.0 0.0 0.3 0.3 &END MOL_DISPLACEMENTS &BOX_DISPLACEMENTS RMVOLUME 75.0 BOX_DISPLACEMENTS &END MAX_DISPLACEMENTS &AVBMC AVBMC_ATOM 1 1 1 1 1 1 1 1 AVBMC_RMIN 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 AVBMC_RMAX 5.0 5.0 5.0 5.0 5.0 5.0 5.0 PBIAS 0.5 0.5 0.5 0.5 0.5 0.5 0.5 &END AVBMC &END MC MD ENSEMBLE NVE STEPS 20 TIMESTEP 0.25 **TEMPERATURE 313.0** &PRINT &ENERGY &EACH MD 20 &END &END &END PRINT &END MD &END MOTION

References

- I. F. W. Kuo, C. J. Mundy, M. M. J., J. I. Siepmann, J. VandeVondele, M. Sprik, J. Hutter, B. Chen, M. L. Klein, F. Mohamed, M. Krack and M. Parrinello, *J. Phys. Chem. B*, 2004, **108**, 12990–12998.
- [2] M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, M. Sprik, J. Hutter, F. Mohamed, M. Krack and M. Parrinello, *Comput. Phys. Commun.*, 2005, 169, 289–294.
- [3] M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hutter, F. Mohamed and M. Krack, J. Phys. Chem. A, 2006, 110, 640–646.
- [4] M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo and C. J. Mundy, Mol. Phys., 2006, 104, 3619–3626.
- [5] J. Hutter, M. Ianuzzi, F. Schiffmann and J. VandeVondele, WIREs: Comput. Mol. Sci., 2014, 4, 15–25.
- [6] J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.
- [7] S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [8] J. VandeVondele and J. Hutter, J. Chem. Phys., 2007, 127, 114105.
- [9] S. Goedecker, M. Teter and J. Hutter, *Phys. Rev. B*, 1996, **54**, 1703–1710.
- [10] C. Hartwingsen, S. Goedecker and J. Hutter, *Phys. Rev. B*, 1998, **58**, 3641–3662.
- [11] A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. J. Tildesley, Mol. Phys., 1988, 63, 527–545.
- [12] S. Duane, A. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett. B, 1987, 195, 216–222.
- [13] J. I. Siepmann and D. Frenkel, Mol. Phys., 1992, 75, 59–70.
- [14] B. Smit, S. Karaborni and J. I. Siepmann, J. Chem. Phys., 1995, **102**, 2126–2140.
- [15] C. M. Simon, B. Smit and M. Haranczyk, Comput. Phys. Commun., 2016, 200, 364– 380.