<div dir="ltr"><div>Dear all:</div><div><br></div><div>I would like to use CP2K to run NPT water simulations that use different functionals.  I have so far used CP2K tutorials to set up simulations based on the PBE and PBE0 functionals.  The simulations that used the PBE functional ran quite efficiently and I'm happy with the results.  The problem is that the simulations based on PBE0 are running so inefficiently that I must have made a mistake somewhere in my input file (i.e., it will take decades for the simulations to finish).  If anyone out there is experienced in using PBE0, I would be very grateful for any advice.<br></div><div><br></div><div>I used this tutorial to set up the simulation.<br></div><div><a href="https://www.cp2k.org/exercises:2017_uzh_cp2k-tutorial:hybrid" title="https://www.cp2k.org/exercises:2017_uzh_cp2k-tutorial:hybrid" style="color: rgb(149, 79, 114); text-decoration: underline; font-family: Calibri, sans-serif; font-size: 14.666666984558105px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;">https://www.cp2k.org/exercises:2017_uzh_cp2k-tutorial:hybrid</a></div><div><br></div><div>Here is my input file.  I have colored the exchange–correlation functional part blue.  If anything looks a little suspect, it probably is because I don't really know what I'm doing as far as optimizing the solver settings or choosing the best PBE0 specifications.  <br></div><div><br></div><div>&GLOBAL<br>  PROJECT pbe0<br>  RUN_TYPE MD<br>&END GLOBAL<br><br>&FORCE_EVAL<br>  STRESS_TENSOR  ANALYTICAL<br>  METHOD  Quickstep<br>  &DFT<br>    BASIS_SET_FILE_NAME BASIS_MOLOPT<br>    POTENTIAL_FILE_NAME POTENTIAL_SET<br>    CHARGE 0<br>    MULTIPLICITY 1<br>    &MGRID<br>       CUTOFF [Ry] 800<br>       REL_CUTOFF [Ry] 60<br>    &END<br>    &QS<br>       METHOD GPW<br>       EPS_DEFAULT 1.0E-10<br>       EXTRAPOLATION ASPC<br>       EXTRAPOLATION_ORDER 4<br>    &END QS<br>    &POISSON<br>       PERIODIC XYZ<br>    &END<br>    &PRINT<br>       &E_DENSITY_CUBE OFF<br>       &END E_DENSITY_CUBE<br>       &MO_CUBES<br>          NLUMO 4<br>          NHOMO 4<br>          WRITE_CUBE .FALSE.<br>          &EACH<br>            MD 10<br>          &END<br>       &END<br>    &END<br>    &SCF<br>      SCF_GUESS ATOMIC<br>      MAX_SCF 30<br>      EPS_SCF 1.0E-6<br>      &OT<br>        PRECONDITIONER FULL_SINGLE_INVERSE<br>        MINIMIZER DIIS<br>      &END OT<br>      &OUTER_SCF<br>        MAX_SCF 10<br>        EPS_SCF 1.0E-6<br>      &END<br>      &PRINT<br>        &RESTART OFF<br>        &END<br>      &END<br>    &END SCF<br><br>  <span style="color: rgb(0, 0, 255);"><b>  ! Exchange-correlation approach</b></span><br> <span style="color: rgb(0, 0, 255);">   &XC<br>      ! Use PBE0<br>      &XC_FUNCTIONAL<br>       &PBE<br>         ! 75% GGA exchange<br>         SCALE_X 0.75<br>         ! 100% GGA correlation<br>         SCALE_C 1.0<br>       &END PBE<br>      &END XC_FUNCTIONAL<br>      &XC_GRID<br>        XC_DERIV SPLINE2_SMOOTH<br>      &END XC_GRID<br>      &HF<br>        ! 25 % HFX exchange<br>        FRACTION 0.25<br>        &SCREENING<br>          EPS_SCHWARZ 1.0E-6<br>          SCREEN_ON_INITIAL_P TRUE<br>        &END<br>        &INTERACTION_POTENTIAL<br>          POTENTIAL_TYPE TRUNCATED<br>          CUTOFF_RADIUS  6.0<br>          T_C_G_DATA ../t_c_g.dat<br>        &END<br>        &MEMORY<br>          MAX_MEMORY 4000<br>          EPS_STORAGE_SCALING 0.1<br>        &END MEMORY<br>      &END HF<br>      &VDW_POTENTIAL<br>         POTENTIAL_TYPE PAIR_POTENTIAL<br>         &PAIR_POTENTIAL<br>            PARAMETER_FILE_NAME dftd3.dat<br>            TYPE DFTD3<br>            REFERENCE_FUNCTIONAL PBE0<br>            R_CUTOFF [angstrom] 16<br>         &END<br>      &END VDW_POTENTIAL<br>    &END XC</span><br>  &END DFT<br><br>  &SUBSYS<br>    &CELL<br>      ABC 13.66 13.66 13.66<br>    &END CELL<br>    &COORD<br>      O    -7.6415350291705231E+00    6.0494971538864633E+00    8.1919697993062783E+00 H2O<br>      H    -6.6418362232982036E+00    5.9231018862335736E+00    8.4056822626120979E+00 H2O<br>      H    -8.0518670684031459E+00    6.3158684817228137E+00    9.0061271153555484E+00 H2O<br>      O    2.6825296782034535E+01    2.0466107496669252E+01    1.7802574406580192E+01 H2O<br>      H    2.6447741120699803E+01    2.0407102905755600E+01    1.6912157191231316E+01 H2O<br>      H    2.6439964847387159E+01    2.1295072206802320E+01    1.8100927322697789E+01 H2O</div><div>! I have omitted most of the atoms for clarity.  I have 300.<br></div><div>    &END COORD<br>    &TOPOLOGY<br>      CONNECTIVITY GENERATE<br>      &GENERATE<br>        BONDLENGTH_MAX 7<br>      &END<br>    &END<br>    &KIND H<br>      BASIS_SET DZVP-MOLOPT-SR-GTH<br>      POTENTIAL GTH-NLCC-PBE-q1<br>    &END KIND<br>    &KIND O<br>      BASIS_SET DZVP-MOLOPT-SR-GTH<br>      POTENTIAL GTH-NLCC-PBE-q6<br>    &END KIND<br>  &END SUBSYS<br>&END FORCE_EVAL<br><br>&MOTION<br> &MD<br>   ENSEMBLE  NPT_I<br>   TEMPERATURE  [K] 400.<br>   TIMESTEP [fs] 0.5<br>   STEPS 8000000<br>   &THERMOSTAT<br>     &NOSE<br>       LENGTH 3<br>       YOSHIDA 3<br>       TIMECON 1000<br>       MTS 2<br>     &END NOSE<br>   &END THERMOSTAT<br>   &BAROSTAT<br>     PRESSURE 1000.<br>   &END BAROSTAT<br>  &END MD<br>  &PRINT<br>    &CELL<br>    &END<br>    &RESTART_HISTORY OFF<br>    &END<br>  &END PRINT<br>&END MOTION<br><br></div><div>Thank you.<br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div></div>