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Abstract
The objective of this thesis is to pave the way for a systematic parameter optimization in

theoretical chemistry. On all levels of theory in computational chemistry, from ab inito to

semi-empirical or force-field approaches, one is confronted with parameter optimization

to some extend. The arising issue with parametrization is that usually the underlying

physical model is supposed to predict not only one property such as total energy but

also atomic structure, dipole or density. Therefore, these properties should be employed

as objective functions in the optimization process, where the goal is to minimize these

functions usually composed as error estimators of reference values. Inevitably, this leads

to a multi-objective optimization problem and the common and most basic approach

of scalarizing the respective objectives into a single-objective function has proven to be

particularly problematic. The issues of the scalarization or preference-based approach

are how the normalization and weighting is carried out besides the more fundamental

problem that some functions can not be added up properly and non-convex solutions

can not be recovered. These aspects make it necessary to introduce a more systematic

and inherent approach. In this work we present a multi-objective algorithm based on

stochastic optimization which is applied to semi-empirical quantum chemistry methods.

The semi-empirical methods are based on the Hartree-Fock formalism, but introduce

more approximations and hence are an order of magnitude faster than traditional ab inito

methods. Although these methods are not as fast as the classical force-field approaches,

they describe the system quantum mechanically and therefore are able to reproduce

important effects such as forming and breaking bonds and polarizability. The combination

of the accuracy of ab initio methods with the speed of the force field approach makes the

semi-empirical methods a valuable tool to access larger systems and longer time-scales in

molecular dynamics simulations without significant loss of accuracy.

In this work, we employ the multi-objective parameter optimization algorithm to the

Neglect of the Diatomic Differential Overlap (NDDO) model, one of the most prominent

representative thereof PM6, and Density Functional Tight Binding (DFTB). Applying

these methods to liquid, bulk and interface simulations of water, we show that large

improvements can be achieved when the optimized parameter set is employed. Thus, we

establish a systematic and integral parameter optimization algorithm for multi-objective

optimization in quantum chemistry. With the present work we laid the foundation for

the application for systematic multi-objective optimization in computational chemistry,

with further significance of force field development or basis set optimization.
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Zusammenfassung
Ziel dieser Arbeit ist, den Weg für eine systematischere Herangehensweise der Parameter-

Optimierung zu ebnen. Auf allen konzeptionellen Ebenen der computergestützten Chemie

von ab-initio über semi-empirische Methoden zu Kraftfelder-Ansätzen, sieht man sich

der Parameter-Optimierung ausgesetzt. Das Problem dabei ist, dass das unterliegende

physikalische Modell nicht nur eine Quantität wie totale Energie reproduzieren soll,

sondern zusätzlich auch Atomstrukturen, Dipole und Dichte. Demnach sollten diese Ge-

gebenheiten in den Optimierungsprozess als Funktionen einfliessen. Diese Zielfunktionen

bestehen meistens aus Fehlerfunktionen zu einem gegebenen Referenzwert. Unvermeidbar

ist dabei, dass mehrere Zielfunktionen auftreten und üblicherweise wurde dieses Pro-

blem durch Skalarisierung, beziehungsweise durch Gewichten und Aufsummieren in eine

einzige Zielfunktion überführt. Hierbei ist aber nicht klar, wie die Normalisierung und

Gewichtung ausgeführt werden soll. Zusätzlich gibt es auch Fälle, in deren die Funktionen

gar nicht addiert werden können. Zudem bleiben nicht konvexe Lösungen verborgen.

Diese Aspekte machen es unumgänglich, einen systematischeren Ansatz zu wählen. In

dieser Arbeit präsentieren wir einen multi-kriteriellen Optimierungs-Algorithmus, welcher

im Bereich der semi-empirischen Quantenchemie angewandt wird. Die semi-empirischen

Methoden basieren auf dem Hartree-Fock-Formalismus, führen aber zusätzliche Annä-

herungen ein und sind somit eine Grössenordnung schneller als traditionelle ab-initio

Rechnungen. Obwohl diese Methoden nicht so schnell sind wie der Kraftfeld-Ansatz,

beschreiben sie das System quantenmechanisch und ermöglichen deshalb den Beschrieb

von Bildung und Bruch chemischer Verbindungen und Polarisation. Die Kombination

der Genauigkeit der ab-initio-Methoden und die Geschwindigkeit des Kraftfeld-Ansatzes

machen die semi-empirsche Vorgehensweisen zu einem wertvollen Instrument um grössere

Systeme und längere Molekulardynamik-Simulationen zu ermöglichen. In dieser Arbeit

wenden wir einen multi-kriteriellen Parameter-Optimierungsalgorithmus auf das Neglect

of the Diatomic Differential Overlap (NDDO) Modell, beziehungsweise auf die Methode

PM6, und Density Functional Tight Binding (DFTB) an. Diese Vorgehensweisen werden

an Simulationen von flüssig Wasser getestet. Wir konnten zeigen, dass eine erhebliche

Verbesserung erzielt werden kann, wenn optimierte Parameter verwendet werden. Somit

haben wir einen Weg aufgezeigt, wie Parameter-Optimierung mit mehreren Zielfunktionen

systematischer als in der Vergangenheit ausgeführt werden kann. Zusätzlich ergeben sich

Anwendungsbereiche in der Kraftfeld-Entwicklung oder der Basis-Satz Optimierung, die

von diesem Ansatz profitieren könnten.
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Introduction

Computational chemistry and molecular modeling are fast emerging areas which are used

for the modeling and simulation of chemical and biological systems to understand and

predict their behavior at the molecular level. Results can give insights in the structure of

materials that are difficult or impossible to measure experimentally. Thus, computational

chemistry has a wide range of applications in various disciplines [1] of engineering sciences,

such as materials science, chemical engineering, bio-medical engineering, etc. Insights

from molecular modeling is essential to understand the behavior of nano-systems [2]. It

is probably the easiest route or gateway to the fast-growing discipline of nano-sciences

and nanotechnology, which covers many areas of research dealing with manometer-sized

objects and which is expected to revolutionize the industrial sector in the coming decades.

Accurate chemical simulations often employ ab-initio methods where the expression

ab-initio is the Latin term meaning ”from the beginning”. This name is given to compu-

tations which are derived directly from theoretical principles (such as the Schrödinger

equation [3]), without inclusion of experimental data. Ab-initio methods, in fact, can

be seen as an approximate quantum mechanical method. The approximations made

are usually mathematical approximations, such as using a simpler functional form for

a function, or getting an approximate solution to a differential equation. A common

type of ab-initio calculation is called Hartree-Fock [4] calculation (HF), in which the

primary approximation is called the mean-field approximation. In this approximation, the

Coulombic electron-electron repulsion is approximated by a constant external electronic

field caused by electrons. HF is a variational method, meaning that the calculated total

energy of a molecule is equal to or greater than its exact energy. The second approxima-

tion in HF calculations is that the many electron wave-function must be described by

some functional form, which is only known exactly for non-interacting electron systems

[5]. The wave-function is formed from linear combinations of atomic orbitals, or more

often from linear combinations of basis functions. Hence, for the linear combination and

for the description of the orbitals, the use of numerical parameters is inevitable.

Embracing the use of parameter sets and reducing more functions to physical meaningful

parameters results in the semi-empirical methods [6, 7, 8, 9]. Semi-empirical calculations

are set up with the same general structure as a HF calculation. Within this framework,

certain pieces of information, such as two electron integrals, are approximated or com-

pletely omitted. In order to correct for the errors introduced by omitting part of the

1



Introduction

calculation, the method is parametrized, by curve fitting in a few parameters or numbers,

in order to give the best possible agreement with experimental data or high level ab-initio

calculations. The merit of semi-empirical calculations is that they are much faster than

ab-initio calculations. The demerit of semi-empirical calculations is that the results

can be slightly defective. If the molecule being computed is similar to molecules in the

database used to parametrize the method, then the results may be very good. If the

molecule being computed is significantly different from anything in the parametrization

set, the answers may be very poor.

If a molecule is too big to effectively use a semi-empirical treatment, it is still possible to

model its behavior by totally avoiding quantum mechanics. The methods, referred to

as molecular mechanics [10], set up a simple algebraic expression for the total energy

of a compound, with no necessity to compute a wave-function or total electron density.

The energy expression consists of simple classical equations, such as the harmonic oscilla-

tor equation in order to describe the energy associated with bond stretching, bending,

rotation, and inter-molecular forces, such as van der Waals interactions and hydrogen

bonding [11]. All parameters in these equations must be obtained from experimental

data or an ab-initio calculation.

The occurrence of parameters can not be avoided on any level of theory for a reasonable

sized system. Although for the ab-initio methods the arising numerical parameters can

be systematically derived, for the semi-empirical and classical methods this approach is

unavailable. There is no standard method to determine and applied mathematics needs

to be consulted.

Thus, in the present work, a re-optimization of a well established semi-empirical method

is carried out with a threefold goal:

First, a systematic optimization approach is established. To date, all available parametriza-

tion of the semi-empirical methods obtained by minimizing a constructed single function.

This functions constructed by summing errors in energy, geometry, ionization and dipole

amongst others. There is no clear consensus on how the function is build and also

how the individual terms are weighted. This manuscript also points out some intrinsic

defects when one combines objectives to one function. Because the present problem of

parametrizing semi-empirical methods deals with various objectives to be optimized, the

proper approach is to carry out multi-objective optimization. A detailed description

of the multi-objective framework is given and the differences elaborated, that when

carrying out multi-objective optimization not only a single solution but multiple trade-off

solutions are found. In such a way, the subjective weighting of the objectives only enters

the optimization process a posteriori and is completely detached from the optimization

procedure itself.

The second goal is to demonstrate that bulk water properties can be reproduced from

water cluster reference data (isolated system containing aggregated water molecules).

Because the reference structures are crucial to the optimization process, a set from

quantum cluster equilibrium [12] was used. With a reference set of 8 structures [13],

already large improvements over standard values can be reported with the optimized

2
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parameter set. To asses the performance of the optimized semi-empirical methods, we

carried out some analysis of bulk and liquid-vapor water systems and compared them with

the standard, ab-initio and classical methods in respect of radial distribution function,

density, surface tension and mean square displacement.

The third goal is to reveal that the underlying theory of the semi-empirical model can

capture all the necessary physics to describe bulk water systems. Thus, the electrostatic

and dispersion terms are accurate enough to reproduce correct results and there is no

need (as was carried out in the past) to correct for deficiencies because the resulting

short comings are mainly based on incomplete parameter sets. Therefore it is crucial to

explore more semi-empirical methods by investigating further the limits of the parameter

space and not till then correcting for possible flaws in the underlying theory.

This thesis is organized in three chapters. A detailed and mathematical description of

multi-objective optimization can be found in chapter 1. The theoretical framework of

semi-empirical methods is elaborated in chapter 2 where the necessary physical and

chemical properties are presented. In chapter 3, we apply the multi-objective optimization

to re-parametrize the semi-empirical method. Various liquid water simulations are carried

out with the newly obtained parameter set and compared to standard value calculations,

ab-inito and classical force-field computations.
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1 Optimization

This chapter reviews the basic theoretical concepts of parameter optimization. Starting

from well known function optimization with common optimization techniques, the bridge

is build to the case were the function possesses more than one objective. As the multi-

objective optimization can not be seen as simple extension of the single-objective case,

all the necessary concepts are outlined and presented to culminate in the review of

algorithms to solve multi-objective problems. Hence, a short introduction to Evolution

Strategy algorithm will be given and finally the Covariance Matrix Adaptation [14] for

multi-objective optimization algorithm is presented.

1.1 Optimization Overview

The goal of optimization is to find one or more feasible solutions which correspond to

extreme values of one or more objective functions or also just referred to as objectives

[15]. In the simplest case, an optimization problem consists of maximizing or minimizing

a real function by varying the input values from within an allowed set and computing the

value of the function. The generalization of optimization theory to other formulations

comprises a large area of applied mathematics [16]. However, optimization methods are

of great importance in practice, particularly in computer science, engineering, economics,

game theory and business decision-making [16]. But even the most fundamental principles

in our world is the search for an optimal state. For that matter, the atoms in physics try

to form bonds [17] in order to minimize the energy [17]. Consequently, the molecules

form solid bodies during the process of freezing, trying to reach energy-optimal crystal

structures.

In case of an optimization problem involving only one objective function, the task of

finding the optimal solution is called single-objective optimization [16] and formulated as
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Chapter 1. Optimization

follow:

minimize
x

f (x)

subject to g j (x) ≤ 0, j = 1,2, . . . , J ;

hk (x) = 0, k = 1,2, . . . ,K ;

x(L)
i ≤ xi ≤ x(U )

i , i = 1,2, . . . ,n;

whereas f (x) is the objective function or simply objective to be minimized over the

variable x. The equations g j (x) ≤ 0 are called inequality constraints and hk (x) = 0 are

termed equality constraints. Lower bounds x(L)
i and upper bounds x(U )

i on the variables

xi may exist and be treated explicitly to maintain feasibility.

Generally, one can distinguish between local [15] and global optimization problems

whereas the latter goal is to find the global extrema of single-objective optimization

problems. As example, a two-dimensional function f (x1, x2) with one function value and

thus one objective is shown in Figure 1.1 whereas local and global extrema exists.

Figure 1.1 – Global and local optima of a two-dimensional function

In contrast to the global optimization problem, local search [18] is a meta-heuristic

method for solving local optimization problems. The most prominent technique is called

hill climbing [19], which belongs to the family of local search. Examples of algorithms

that solve convex (i.e convex functions) problems by hill-climbing include the simplex

algorithm for linear programming and binary search. An other outstanding group of local

optimization algorithms are represented by the gradient based methods [15]. Whereas

the gradient descent (as illustrated in Figure 1.2), newton’s method [20], conjugated

gradients [20] and the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

[20] are most known representatives. If the multi-variable function F (x) is defined and

differentiable in a neighborhood of a point a, then F (x) decreases fastest if one goes

from a in the direction of the negative gradient of F at a, −∇F (a). It follows that, if

b = a −γ∇F (a) for γ small enough, then F (a) ≥ F (b). Consequently, one starts with a

6



1.1. Optimization Overview

guess x0 for a local minimum of F, and considers the sequence x0, x1, x2, ... such that

xn+1 = xn −γn∇F (xn),n ≥ 0. and thus converges to the desired local minimum as explained

in Figure 1.2.

Figure 1.2 – Illustration of gradient descent.

Besides deterministic search principles involved in algorithms, there also exist stochastic

search concepts [15]. These techniques are mostly used to find globally optimal solutions

since using deterministically based algorithm would result in exhaustive enumeration

of the search space and hence are not feasible even for relatively small problems. Most

often the Monte Carlo algorithms [21] are applied which trade guaranteed correctness of

the solution in for a shorter runtime. Thus, the results obtained with this technique are

not totally incorrect - they may just not be the global optima in that respect. On the

other hand, a slightly inferior solution is better than one which needs years to be found.

Current trends in parallel processors [22] also advances the field of Monte Carlo algorithms

since most of the problems are well suited to be solved in a massively parallel manner.
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Figure 1.3 – Serial versus parallel approach

Figure 1.3 illustrates the embarrassingly parallel approach (little or no effort is required

to separate the problem into a number of parallel tasks) for problems that can be solved

in that fashion. The state of the art hardware for computation these days embrace

multi-core and multi-processor computing arranged in clusters or grids (Figure 1.4),

perfectly suited to solve parallel Monte Carlo problems. Hence, since all evolutionary

algorithms (EA) are basic variation of the Monte Carlo algorithm (Figure 1.5), these

application can take full advantage of the computing resources available and therefore

opens up wide range of applications to be explored in the future.

Figure 1.4 – Piz Daint supercomputer [23]
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Figure 1.5 – Taxonomy of optimization algorithms

Most optimization algorithms use heuristics which are help functions to decide which

one of a set of possible solutions is to be examined next. Heuristics can be applied by

both, deterministic as well as probabilistic algorithms.

Meta-heuristics [15] usually work population-based or use a model of some physical

process or natural phenomenon as heuristic function. An important class of Monte Carlo

meta-heuristics is evolutionary computation [24]. It encompasses all such algorithms

which are based on a set of multiple solution candidates (called population) which are

iteratively refined. This field of optimization is also a group of soft computing [25] as

well as a part of the artificial intelligence [26] area as pointed out in Figure 1.5. Its most
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important members are evolutionary algorithms, which will be discussed in-depth in this

chapter.

Beyond the evolutionary approaches, which are usually nature-inspired, there are also

methods that mimic physical processes like simulated annealing and parallel tempering,

as well as purely artificial techniques like tabu search [27] and random optimization.

1.2 Single and Multi-Objective Optimization

Most real-world search and optimization problems naturally involve multiple objectives

[16]. Applying different sets to those objectives may produce trade-off’s (conflicting

scenarios) among different objectives. A solution that is extreme (in a better sense) with

respect to one objective might mean a compromise in an other objective. This prohibits

one to select a solution which is optimal with respect to only one objective.

Indifference curves in economics [28] or efficient frontiers in finance [29] are example of

real-world applications in the area of social science. There exists numerous problems in

engineering such as optimal control [30] or various application to optimal design [31] to

name a few. Since these problems are applied to sets F of n functions fi , which represent

multiple criteria [16] usually they are also referred to as multi-criteria problems.

F = { fi : X → Yi : 0 < i ≤ n,Yi ⊆R} (1.1)

Algorithms designed to optimize such a set F of objective functions are normally named

with the prefix multi-objective, like multi-objective evolutionary algorithms [32].

Many algorithms and application case studies involving multiple objectives can be found.

Unfortunately, most of those methods avoid the complexities involved in a true multi-

objective optimization problem and transform multiple objectives into a single objective

function by using some user-defined parameters. Hence, the majority of the studies

do not treat multi-objective any different than single-objective optimization. Various

studies concentrate on various means of converting multiple objectives into a single

objective. This is contrary to the intuitive realization that single-objective optimization is

a degenerate case of multi-objective optimization and clearly, multi-objective optimization

can not be seen as simple extension of the single-objective case. However, there is a

fundamental difference in single and multi-objective optimization which is neglected when

using the transformation method. This important fact will be addressed in the following

subsection.

1.2.1 Fundamental Differences

Since each objective corresponds to a different optimal solution, the result might be

conflicting objectives. Lets consider a microchip manufacturer and the two main goals

10
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are to decrease the size of the microprocessor and the overall costs. Thus, the production

of smaller units intrinsically comes with higher costs because it is technically more

demanding. This prohibits one to choose a solution which is optimal with respect to only

one objective.

Figure 1.6 – Trade-off solutions for an multi-objective problem

In figure 1.6 if the only objective is the size, then the optimal solution would be point

labelled 1. If cost would not matter, this chip type would be the only one considered.

But given the economical element, the costs have to be included as well. This gives rise

to multiple solution to the bi-objective problem of the manufacturer. Thus, between any

two such solutions, one is better in terms of one objective, but this betterment comes only

from a sacrifice on the other objective. We can state that none of these trade-off solutions

is the best with respect to both objectives. Hence, in cases with more than one conflicting

objective, there is no single optimum solution and without any further information, no

solution from the set of optimal solutions can be said to be better than any other. This is

the fundamental difference between a single-objective and a multi-objective optimization

procedure.

1.2.2 Two Approaches to Multi-Objective Optimization

Although the underlying difference given the two optimizations lies in the cardinality in

the optimal set, from a pragmatic standpoint, a user wants only one solution. Which

of the resulting solutions must one choose? Getting back to the example from above,

this is not an easy question to answer. For the microchip manufacturer it involves

many other considerations, such as the total finances, costumer markets, research efforts,

infrastructure, market position, and many other factors. Usually, this higher-level
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information is of a non-technical origin and qualitative and experience-driven. Hence,

in a multi-objective optimization, the effort must be made ideally in finding the set of

trade-off optimal solutions followed by evaluation of higher-level consideration to make a

choice.

Multi-objective
optimization problem

Multi-objective
Optimizer

Multiple trade-off
solutions found

●

●

●

●

●

●

High-level
Information

Choose one
solution

●

●

●

●

●

●

●

Output
one solution

(a) Schema of an ideal multi-
objective optimization procedure

Multi-objective
optimization problem

High-level
Information

Estimate a
relative

importance
vector

(w1, w2, ...wn)

Single-objective
problem

F = w1 f1 +
w2 f2 + ...+wn fn

single-objective
optimizer

Output
one solution

(b) Schematic of a preference-
based multi-objective optimiza-
tion procedure

Figure 1.7 – The two approaches to multi-objective optimization

Figure 1.7 illustrates the principles of an ideal multi-objective process. In a first step,

multiple trade-off solutions of the given multi-objective optimization problem are found.
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Then, higher-level information are used to select a trade-off solution of the set. This

corresponds to a specific order of importance of the objectives, and by selecting the

solution at the end weighting them a posteriori. As can be seen in figure 1.6, solution

point 1 assigns more importance to size than cost. On the other hand, solution 2 assigns

more importance to cost than size. Hence, if such a relative preference factor among

the objectives is known for a very specific problem, a simpler approach can be taken.

This method would be to form a composite objective function as the weighted sum of

the objectives, where the weight for an objective corresponds to the preference factor

assigned to that particular objective. This scalarization approach assigns weights a priori

to the multi-objective problem and results in a single-objective optimization problem

which can easily solved with standard methods. A schematic of this preference-based

multi-objective optimization is illustrated in figure 1.7. Based on higher-level information,

the weight or preference vector w is constructed from the weights wi representing the

importance. Thereafter, the weight vector is used to construct the composite function,

which is then used for the single-objective procedure.

g (x) =
n∑

i=1
wi fi (x) = ∑

∀ fi∈F
wi fi (x) (1.2)

x∗ ∈ X ∗ ↔ g (x∗) ≥ g (x)∀x ∈ X̃ (1.3)

It is clear that this method is extremely sensitive to the preference vector used for the

weighted sum approach. Additionally, it is very difficult to find a relative preference

vector since it is highly subjective and not straightforward. Without any knowledge of

correlations or trade-off solutions, this is even a more difficult task. Yet another drawback

of this approach is that it cannot handle functions that rise or fall with different speed

[16] properly. For instance, the sum of f1(x) =−x2 and f2(x) = ex−2 will always disregard

one of two functions, depending on the interval chosen. For small x, f2 is negligible

compared to f1. On the other hand, for x > 6 it begins to outpace f1 which, in turn, will

become unimportant. It is not possible to add up properly such functions using constant

weights. Even setting w1 to a very large number such as 1010 will fail because f1 will

become insignificant for x > 40, because
∣∣∣−402×1010

e40−2

∣∣∣∼ 0.0005. Therefore, preference-based

approaches are only suitable to optimize functions that share the same big O notation.

A similar problem is the scalarization of different units. In practical cases, the different

objectives fi consist of different physical units. To construct the composite function one

needs to normalize these functions first and it is not evident how to proceed and rather

what normalization constant should be used.

Figure 1.8b illustrates the optimization using the preference-based or weighted sum

approach for the example in figure 1.8a. The weights are taken as 1, which maximizes

both functions f1 and f2 and leads to a single optimum x∗ = x̃.
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(a) Two functions f1 and f2 with different maxima

x̃1 and x̃2

(b) Optimization using the weighted sum

approach

Figure 1.8 – Illustration of the weighted sum approach

Historically, a lot of time and energy was devoted to single-objective optimization [16]

and therefore it is not surprising that the preference-based advances for multi-objective

optimization gained a lot of popularity [16]. That is, especially the weighted sum ap-

proach was extensively used also in quantum chemistry [33]. Additionally, the weighted

sum approach was motivated by the fact that this method would find only one single

solution in a simulation run and therefore simplify the complexity of the given problem.

Of course this simplification is a fallacy, as the higher-level information to construct the

composite function is never complete and hence a vast number of artefacts are introduced.

But since the method produced reasonable and usable results [33], it can be a suitable

approach. Nevertheless, the lack of a systematics and methodology makes it almost

impossible to verify and reproduce preference-based optimization procedure reported in

literature. Therefore, real multi-objective optimization is advised where the entire process

is transparent and even when the high-level information are changing the optimization

process does not have to be repeated.

Indeed, the area of optimization has changed rapidly over the last few years due to stochas-

tic techniques [15]. Both, the field of global optimization as well as the multi-objective

optimization domain was influenced massively by the evolutionary algorithms (EA). The

advantage of those methods, which will be disused extensively in this manuscript, is

that a population of solutions is maintained and hence as a result a set of solutions is

produced. Ideal, it can be expected that the members of the population can cover the set

of optimum solutions. Accordingly, the goal of multi-objective evolutionary algorithms

is to find a diverse set of optimum solutions in its final population. Since for solving

multi-objective optimization problem we need different sets of optimal solutions, this

makes the evolutionary algorithms extremely suitable to this kind of problem setting.
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1.3. Multi-Objective Optimization

1.3 Multi-Objective Optimization

A multi-objective optimization problem deals with multiple criteria decision making, that

is concerned with mathematical optimization problems involving more than one objective

function to be optimized simultaneously [16]. Historically, those problems were mostly

cast and solved as a single-objective optimization problem due to lack of suitable solution

methodologies. However, this conversion introduces a huge amount of artefacts and is

extremely error prone. Moreover, multi-objective optimization can not be seen as simple

extension of the single-optimization case. Since in the single-optimization case only one

solution is obtained, it is wrong to assume that for the multi-objective case there would

be one solution corresponding to each objective function. In the following section, we

will discuss the fundamental principles of multi-objective optimization.

1.3.1 Basic Concepts

A multi-objective optimization problem is an optimization problem that involves multiple

objective functions [16]. In mathematical terms, a multi-objective optimization problem

can be formulated as

minimize
x

fm(x), m = 2,3, . . . , M ;

subject to g j (x) ≥ 0, j = 1,2, . . . , J ;

hk (x) = 0, k = 1,2, . . . ,K ;

x(L)
i ≤ xi ≤ x(U )

i , i = 1,2, . . . ,n;

where the integer m ≥ 2 is the number of objectives, and the minimization is subject to

J inequality constrains as well as K equality constrains. The last set of constraints are

called variable bounds, restricting each variable xi to be within boundaries x(L)
i and x(U )

i .

All solutions fulfilling the constraint functions are called feasible set. Hence an element

x∗ ∈ S is called a feasible solution or a feasible decision [16] where S is the feasible decision

space S ⊂Rn . Therefore, we realize that in the presence of constraints, the entire decision

variable space D does not need to be feasible. In general, a solution x is a vector of n

decision variables: x = (x1, x2, . . . , xn)T . In addition, the vector-valued objective function

is often defined as f : S →Rm , f (x) = ( f1(x), . . . , fk (x))T . From this formulation it is more

evident why multi-objective optimization is also referred to as vector optimization or

multi-attribute optimization. This is also the most eminent feature of multi-objective

optimization where there is a mapping from f :Rn →Rm . In contrast the single-objective

case where the mapping is f :Rn →R. Figure 1.9 illustrates an example of a the mapping

from the decision space (S ⊂R3) with the variables x1, x2, x3 to the objective space with

the two objectives f1, f2.

15



Chapter 1. Optimization

(a) Decision space with the variables x = (x1, x2, x3)
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14

f1

f2

(b) Objective space with the two objectives
f = {( f1, f2) ∈ D}

Figure 1.9 – Mapping from decision space to objective space

1.3.2 Difference with Single-Objective Optimization

Besides the obvious difference of having multiple objectives, there are a number of

fundamental differences between single-objective and the multiple-objective counterpart

as follows:

• two goals instead of one;

• dealing with different search spaces;

• no artifical fix-ups;

We will take a look at those differences in more detail in the following subsection.

1.3.2.1 Two Goals Instead of One

As we have seen, in multi-objective optimization, there are clearly two goals compared

to only finding the best solution in single-objective cases. The first aim is to progress

towards the front of the best trade-off solutions [34, 35], which is certainly an important

goal. Nevertheless, it is equally important to maintain a diverse set of solutions in

the non-dominated front since an algorithm that finds a closely packed set of solutions

would not be very useful. Given that all objectives are important in a multi-objective

optimization, manifold solutions close to the Pareto-optimal front provide different sets

that deal with the different trade-off for the given objectives. These two goals, progressing

towards the Pareto-optimal front and maintaining diversity, are somewhat orthogonal

to each other. Therefore mechanisms to converge to the Pareto-optimal front as well
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as maintenance of a diverse set of solutions must be incorporated in an algorithm to

solve multi-objective problems as desired. On account of this dual tasks, multi-objective

optimizations are much harder to solve than the single-objective problems.

1.3.2.2 Dealing with Different Search Spaces

Yet another hurdle is that a multi-objective optimization problem has to deal with

different search spaces, instead of one. In single-objective optimization, there is only one

search space and the solutions are either accepted or rejected according to the objective

function values. Clearly, f :Rn →R as it is present in single-objective optimization is a

very simple one-dimensional criterion space R. On the other hand the criterion space

in the multi-objective optimization is fare more complex Rm and the requirement on

an algorithm is that the proceedings in all spaces must be coordinated in such a way

that the creation of new solutions in the decision variable space is complimentary to the

diversity need in the objective space. Obviously, this is a very difficult task and depends

very much on the mapping between the spaces.

1.3.2.3 No Artificial Fix-Ups

As we have already briefly mentioned, historically owing to the fact of lacking suitable

means of handling multi-objective optimization problems, different fix-ups were invented.

The most prominent approach, the weighted sum proposal, introduces an artificial fix-up

through the chosen weights. Multi-objective optimization for finding multiple Pareto-

optimal solutions on the other hand, eliminates all such fix-ups. Moreover, especially in

the field of research, knowledge of such multiple optimal solutions may help a designer to

compare solutions and getting an understanding of the underlying problem. Since there

is no need to conduct multiple runs and also no artificial fix-ups are introduced, and

above all, the concept of dominance (which will be introduced shortly) can be used, all

this helps to overcome some of the difficulties and introduces a powerful tool to handle

multiple objectives.

1.3.3 Dominance and Pareto Optimality

The majority of multi-objective optimization algorithms use the concept of dominance

for ranking the solutions. In this subsection we investigate the concept of dominance and

related terms and present some techniques for finding dominant results in a finite set of

solutions.
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1.3.3.1 Concept of Domination

We use the following paragraph to describe the concept of domination since this is usually

needed to compare two solutions.

The operators C and B are used to denote if an solution i is better or worse than a

solution j on a particular objective. Therefore i C j indicates that the solution i is better

than j for a given objective.

Definition 1. A solution x(1) dominates an other solution x(2) if follwoing conditions are

fullfiled:

• The solution x(1) is no worse than x(2) in all objectives, or if f j (x(1))7 f j (x(2)) ∀ j =
1,2, . . . , M

• The solution x(1) is strictly better than x(2) in at least one objective, or f j (x(1))/

f j (x(2)) ∃ j ∈ {1,2, . . . , M }.

In case that both conditions are satisfied we can conclude that solution x(1) dominates

the solution x(2). Mathematically this is equivalent to stating x(1) ¹ x(2) and hence x(2) is

dominated by x(1).
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Figure 1.10 – A population of seven solutions

We shall consider a bi-objective optimization problem with a given set of solutions as

shown in Figure 1.10. Since both functions f1 and f2 need to be minimized, it is difficult to

decide which is the best solution in the set. However, applying the concept of domination

to decide which solutions are better can clarify the situation. One can for example see

that solution 6 is dominating solutions 4,5 and 7. We can also observe that solution 3 is
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better in terms of both objectives than solution 2 and 7. Solutions 2 and 7 are equally

good in objective f2 but since solutions 2 is better in respect to the objective f1 it satisfies

the definition of dominance and hence solution 2 dominates solution 7.

It is important for an optimization algorithm to keep the best set of solution and the

concept of domination offers a tool for this comparison and finally provides a selection of

non-dominated solutions. In the case of the example in Figure 1.10, the solutions {1,3,6}

are superior and therefore should be selected over the other solutions {2,4,5,7}. Most of

the multi-objective optimization algorithms use this non-domination principle as concept

for selection as we shall see in this chapter.

1.3.3.2 Concept of Pareto-Optimality

Performing all pair-wise comparisons and noting which solution dominates others and

which solutions are non-dominated with respect to each other for a given set of solutions

results in a set of solutions which do not dominate each other. This particular set of

solution is usually termed non dominated set for a given solution space [16]. In the

example of Figure 1.10 the non dominated set is represented as {1,3,6} since non of these

solutions are dominated by any other solution in the set. Thus, a set of non-dominated

solutions is defined as follows [16].

Definition 2. Among a set of solutions P, the non-dominated set of solutions P’ are

those that are not dominated by any member of the set P

In case the set P is the entire search space (P = S), we call the resulting non-dominated

set P ′ the Pareto-optimal set. The term is named after Vilfredo Pareto (1848-1923) [36],

an Italian economist who used the concept in his studies of economic efficiency and

income distribution.

We illustrate an bi-objective optimization problem with objectives f1 and f2 respectively

which both should be minimized. Analysing all possible pair-wise comparisons of the

solutions xi
?
/x j , i 6= j results in a set of non dominated solutions {15,18,22,24,46} as shown

in 1.11. The solid red lines in Figure 1.11 mark the Pareto-front that is the connection

of the set of non-dominated solutions.
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Figure 1.11 – An illustration of the Pareto-front of the non dominated set of solutions

Since there can be local Pareto-optimal sets in multi-objective optimization similar to

local optimal solutions in the case of single-objective optimization, we define the global

Pareto-optimal set as accordingly [16].

Definition 3. The non-dominated set of the entire feasible search space S is the globally

Pareto-optimal set.

In the literature, usually the globally Pareto-optimal set is simply referred to as the Pareto

set [16] because within the feasible search space those candidates are not dominated by

any member of the set and hence are the optimal solutions to the given multi-objective

optimization problem.

1.3.3.3 Algorithms for Finding a Non-Dominated Set

A very slow and naive approach for finding a non-dominated set could be to compare

each solution xi with every other solution x j in the population to verify if it is dominated.

If a solution x j is found to dominate solution xi , it is clear that it can not belong to the

non-dominated set and hence it is flagged and one advances to the next iteration i . The

following approach describes an algorithm for finding a non-dominated set in a given set

P of size N.
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Algorithm 1: Naive and slow approach

Data: set P

Result: non-dominated set P’

i=1;

N=size(P);

P’={ };

while i ≤ N do

xi = Pi ;

while j ≤ N ; i 6= j do

x j = P j ;

if x j /xi then

dominated=true;

exit;

else

dominated=false;

j = j + 1

if (not dominated) then
P ′ = P ′∪ {xi }

i = i +1

We illustrate the scheme of the algorithm on the same set of seven (N = 7) solutions, as

shown in Figure 1.10. The result of the algorithm is the non-dominated set of solutions

P’. As seen previously, this should include the solutions {1,3,6} and indeed this is exactly

the result we obtain applying the working principle presented. Following a step by step

illustration is given for the simple and naive approach.
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Step 1: i = 1;P ′ = { }

Step 2: x1 is compared to all other solutions x j ; i 6= j of the set

Step 3: since non of the solutions x j dominate x1, we add x1 ∪P ′

Step 4: x2 is compared to all other solutions x j ; i 6= j of the set

Step 5: it is found that solution x3 dominates x2 and hence x2 is flagged dominated and

we skip to the next solution

Step 6: x3 is compared to all other solutions x j ; i 6= j of the set

Step 7: since non of the solutions x j dominate x3, we add x3 ∪P ′

Step 8: x4 is compared to all other solutions x j ; i 6= j of the set

Step 9: it is found that solution x6 dominates x4 and hence x4 is flagged dominated and

we skip to the next solution

Step 10: x5 is compared to all other solutions x j ; i 6= j of the set

Step 11: it is found that solution x6 dominates x5 and hence x5 is flagged dominated and

we skip to the next solution

Step 12: x6 is compared to all other solutions x j ; i 6= j of the set

Step 13: since non of the solutions x j dominate x6, we add x6 ∪P ′

Step 14: x7 is compared to all other solutions x j ; i 6= j of the set

Step 15: it is found that solution x2 dominates x7 and hence x7 is flagged dominated and

we stop since i = 7 = N

As expected, the resulting non-dominated set is P ′ = {1,3,6}.

The inner loop results in O (N ) comparisons for domination and each comparison consists

of M function value comparisons. Therefore, the total complexity of the inner loop is

O (M N ). Recursively, the outer loop adds additional O (N ) operations, resulting in a

total worst case complexity of O (M N 2). Since in the inner loop most likely not all N −1

solutions have to be checked before a dominant solution can be found the real complexity

might be smaller than O (M N 2).

Although the worst case complexity of all algorithms for finding non dominated set of a

multi-objective optimization problem is O (M N 2), there exists a variety of more efficient

algorithms [2], for one the method proposed by Fang et el [37] and more recently refined

algorithms by Ding [38] and Jun Du [39] and Mishra [40]. The best case time complexity

of the latter is O (N l og (N )) and hence an improvement as compared to other algorithms.
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As we shall see later, some multi-objective optimization algorithms require us not only to

find the best non-dominated front in a population, but to be classified into various non-

domination levels. Hence, the population needs to be sorted according to an ascending

level of non-dominance.
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Figure 1.12 – Different pareto-levels for a set of 50 solutions of a multi-objective opti-
mization problem

Usually, the best solution of non dominance are called non-dominant solutions of level

1. Removing this set from all the solution and repeating the procedure gives solution

to the non-dominant set of level 2. This process can be repeated until all solutions are

assigned a level of dominance. This is equivalent with designating each solutions to a

corresponding Pareto-front of different levels. Figure 1.12 illustrates the same set of

solution as Figure 1.11 but with corresponding non-dominance level ranging from 1 to 9

(from red to purple). The different Pareto fronts are recursively produced removing the

leading Pareto-front and repeating the procedure to find the remaining non-dominant set

of the population.

As before, the procedure requires O (M N 2) computations per iteration and since it is

repeated to find the subsequent fronts the worst case (when there exists only one solution

in each front) complexity of the non-dominant sorting algorithm is O (M N 3). However,

Deb et al [16] described a fast non-dominated sorting approach which will require at

most O (M N 2) computations.

For each solution two entities are calculated: (i) ni , the number of solutions which

dominate the solution i , and (ii) Si , the set of solutions which are dominated by solution

xi . To calculate these entities O (M N 2) comparisons are required. All points with ni = 0

are put in a list F1 which is called the current or pivoting front. Subsequently, for each

solution in the current front we visit each member (j) in the sets Si and reduce its n j
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count by once since the solution is not in the set any more. Due to this, if for any member

j the count n j becomes zero, we put it in a separate list H . After checking all members

of the current front, we declare F1 as the first front. Hence, the process is continued

using the newly identified front H as the current front.

This iteration requires O (N ) computations and this process is carried out till all fronts

are identified. In a worst case there can be N fronts and consequently the worst case

complexity of this loop is O (N 2) resulting in a overall complexity of the algorithm as

O (M N 2)+O (N 2) or O (M N 2).

Although the computational burden was reduced from O (M N 3) to O (M N 2) by perform-

ing systematic book-keeping, the storage requirements were increased from O (N ) to

O (N 2) in the worst case scenario. The fast non-dominated sorting algorithm applied

on a population P returning a list of non-dominated fronts F is outlined as following.

Algorithm 2: fast non-dominated-sort (P)

Data: set P

Result: lists of non-dominated sets Li

i=1;N=size(P);L={ };

while i ≤ N do

xi = Pi ;

while j ≤ N ; i 6= j do

x j = P j ;

if x j /xi then ; // if x j dominates xi then

Sxi = Sxi ∪x j ; // include x j in Sxi

else if xi /x j then ; // if xi is dominated by x j then

nxi = nxi +1; // increment nxi

j = j + 1

if nxi = 0 then
F1 = F1{∪xi }

i = i +1

while Fi 6= { } do

H = { };

N=size(Fi );

while i ≤ N do

K=size(Sxi );

while j ≤ K do

nx j = nx j −1;

if nx j = 0 then
H = H ∪x j

; // if nx j is zero, x j is a member of list H
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1.3. Multi-Objective Optimization

1.3.4 Classical Methods

In this subsection we will describe common classical approaches used in multi-objective

optimization. Thus, because these methods are in contrast to the a posteriori methods

such as evolutionary algorithms and hence follow the path given in Figure 1.7b one refers

to this group as classical methods. Classical approaches have been around for at least

the past four decades and many different algorithms have been suggested [16]. Cohon

[41] or Hwang and Masud [42] and later Miettinen [43] have attempted to classify the

algorithms to various considerations. Here we introduce only the following three classes:

• Scalarizing methods

• No-preference methods

• A priori methods

We will illustrate the first class with the most prominent example. It is important to note

that none of the classical approaches make any attempt to find multiple Pareto-optimal

solutions. Hence, the classical methods aim at finding a single optimal solution which is

ill-defined for a multi-objective optimization problem.

1.3.4.1 Scalarizing multi-objective Optimization Problems

We already introduced the weighted sum method which is a particular case of the

more general scalarizing approach to multi-objective optimization. The more general

formulation for a scalarization for a multi-objective optimization is thus

minimize
x

F ( fm(x)), m = 1,2, . . . , M ;

subject to g j (x) ≥ 0, j = 1,2, . . . , J ;

hk (x) = 0, k = 1,2, . . . ,K ;

x(L)
i ≤ xi ≤ x(U )

i , i = 1,2, . . . ,n;

where F is the scalarization function F :Rm →R. The simplest approach and probably

also the most widely used scalarization function is the weighted sum or linear scalar-

ization method where F =∑M
m=1 wm fm(x). As the name suggests, each objective gets

pre-multiplied by a user-supplied weight-vector wm . As simple and elegant this approach

may seem, it introduces the difficult question of what weights must one use. The answer

depends on the importance of each objective as well as the scaling factor or normalization

(i.e to render unit-less quantities). The normalization of each objective is far from trivial

but crucial for the weighted sum approach. Ideally, each objective should be scaled in

respect that all ranges are appropriate and similar. Hence, the linear scalarization can
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be written as

minimize
x

F (x) =
M∑

m=1

wm

nm
fm(x), m = 1,2, . . . , M ;

subject to g j (x) ≥ 0, j = 1,2, . . . , J ;

hk (x) = 0, k = 1,2, . . . ,K ;

x(L)
i ≤ xi ≤ x(U )

i , i = 1,2, . . . ,n;

where wm ∈ [0,1] is the weights or importance of each objective (usually the additional

constraint
∑M

m=1 wm = 1 is applied) and nm is the normalization such that the objective

are represented in the same order of magnitude. A number of interesting theorems

regarding the relationship between the optimal solutions of the linear scalarization and

the true Pareto-optimal solutions in classical texts exits [16]. We only not that the

weighted sum approach represents one Pareto-optimal solution if the weight is positive for

all objectives. The same is true for the reciprocal way namely, if x∗ is a Pareto-optimal

solution of a convex problem, then there exits a non-zero positive weight vector w such

that x∗ is a solutions to the problem. The proof can be found in Miettinen [43] and

as consequence for a convex multi-objective optimization problem any Pareto-optimal

solutions can be found by using the weighted sum method as illustrated in 1.13a.

(a) Geometrical representation of the

weight-sum approach in the convex Pareto

curve case

(b) Geometrical representation of the

weight-sum approach in the non-convex

Pareto curve case

Figure 1.13 – Different geometrical shapes of the Pareto curve

The above linear scalarization approach cannot find certain Pareto-optimal solutions in

the case of a non-convex objective space. Figure 1.13b explains this scenario whereas

no weight can be chosen such that a contour line results in the region between B and C .

This is because before a line becomes a tangent to any point in BC , it gets a tangent

elsewhere and hence the Pareto-front in the region BC can not be found by the weighted

sum method. Unfortunately this property has been neglected in many studies because

an convex objective space was assumed which of course is not generally applicable and
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therefore caution must be applied when using the linear scalarization method.

An alternative scalarization method offers a solution to overcome the problem of non-

convex Pareto optimality. The ε-constraint method as suggested by Haimes et al

[44] reformulates the multi-objective optimization problem by just keeping one of the

objectives and restricting the rest of the objectives within predefined and user-specified

values. The modified problem is as follows:

minimize
x

fµ(x),

subject to fm(x) ≤ εm m = 1,2, . . . , M ;

g j (x) ≥ 0, j = 1,2, . . . , J ;

hk (x) = 0, k = 1,2, . . . ,K ;

x(L)
i ≤ xi ≤ x(U )

i , i = 1,2, . . . ,n;

where the parameter εm corresponds to an upper bound of the value of fm and does not

necessarily have to be a value close to zero. As illustration in figure 1.14 let us say that

we retain f1 as an objective and treat f2 as a constraint: f2 ≤ ε with different values for

ε. Let us consider the scenario with ε= ε4 in figure 1.14. The left portion becomes the

feasible solution to the original bi-objective optimization problem. It can be seen that

the minimum solution to this constraint problem would be solution ’C’. For ε= ε3 the

resulting minimum solution would be found in point ’B’ and consequently for ε= ε2 the

best solution would be ’A’.

Figure 1.14 – A non-convex Pareto front with different ε values and corresponding solution
points.

This approach is able to identify a number of non-inferior solutions on a non-convex

boundary that are not obtainable using the weighted sum technique. A disadvantage

of this approach is that the use of hard constraints is rarely adequate for expressing
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true design objectives. The optimization proceeds with reference to these priorities and

allowable bounds of acceptance. The difficulty here is in expressing such information at

early stages of the optimization cycle.

For other scalarization approaches such as the Guddat [45] or Benson [46] method,

the min-max scalarization [47], Chebyshev-norm approach as well as Pascelotti-Serafini

scalarization [48] we refer to [16] for a detailed description. For an additional summary

of the no-preference and a priori methods the reader is advised to consult [16] or [49].

1.3.4.2 Summary and Disadvantages of the Classical Approaches

Some major difficulties arise from the classical approaches as we have seen in the above

section. Most algorithms convert the multi-objective optimization problem into a single-

objective optimization problem by using some user-defined methods. Of these methods

usually employed, the weighted sum approach converts the objectives into a single

objective by normalizing and weighting and summing each objective. The preference

vector requires some problem knowledge to impose an a priori weighting. It can be shown

that the linear scalarization method is incapable of finding trade-off solutions in problems

with non-convex Pareto-fronts [16]. Although the ε-constraint method overcomes this

pitfalls, the ε-vector to be selected highly influences the outcome and has to be dealt

with great elaborateness. Therefore, mainly three problems remain:

• Only one Pareto-optimal solutions can be found in one simulation run

• Some Pareto-optimal solutions can not be found in non-convex multi-objective

optimization problems

• All classical algorithm require some a priori knowledge of the problem

1.3.5 Evolutionary Algorithm and Covariance Matrix Adaptation

Evolutionary algorithms (EA) are based on adapting Darwinian principles and therefore

mimic natural evolution to constitute search and optimization procedures, hence the

name. As we have seen in Figure 1.7 technically they belong to the family of Monte

Carlo (Figure 1.5) or trial and error problem solver in the class of probabilistic methods.

Nevertheless, the are some differences from classical search and optimization procedures

in a variety of ways for the evolutionary algorithms. The focus in this chapter will be

on the special class of Evolution Strategy (ES) which is a subgroup of the more general

evolutionary algorithms as shown in Figure 1.5.

Most multi-objective optimization algorithms are based on single-objective algorithms in

special ways, thus an understanding of the single-objective evolutionary algorithms will

be essential in understanding the working principles of multi-objective evolutionary algo-
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rithms. It is also worth mentioning that there exist other evolutionary and nature-inspired

algorithms, such as ant-colony optimization, simulated evolution, DNA computing, and

cultural algorithm, descriptions of which can all be found in the literature and reviews

[50, 51, 52, 53] and textbooks and review of evolutionary algorithms [54, 16, 55, 56, 57, 58]

As illustrated in Figure 1.5 the evolutionary algorithms belong to the class of Monte

Carlo algorithms and hence are perfectly suited to be converted to parallel computer code.

This inherent property of the evolutionary algorithms allows to take full advantage of

advanced computer hardware architecture and allows to expand into areas of optimization

which have been concealed to date.

1.3.5.1 Evolution Strategy (ES)

As the parent family of evolutionary algorithms, the class of evolution strategies [59,

60, 24, 61], sometimes also referred to as evolutionary strategies, are search paradigms

inspired by the principles of biological evolution. The basic concept is a repeated

process of stochastic variations followed by selection: in each generation (or iteration),

new offspring (or candidate solutions) are generated from their parents, their fitness

is evaluated, and the better offspring are selected to become the parents for the next

generation as illustrated bellow (Figure 1.15):

The problems mostly addressed with evolution strategies are continuous black-box

Initialization Initial evaluation Selection Mutation Evaluation Termination check

Figure 1.15 – Evolution Strategy illustrated as basic concept

optimization where the search space is the continuous domain Rn , and solutions in search

space are n−dimensional vectors, denoted as x. The objective or fitness function has the

form f :Rn →R, x → f (x) to be minimized as seen in the previous chapters as a normal

single-objective optimization problem. Now, for the evolution strategies, we assume a

population, P , of so-called individuals where each individual consists of a solution vector

x ∈Rn (visible traits or phenotype) and further endogenous parameters, s (hidden traits)

and an additional associated fitness value, f (x). The individuals can also be denoted as

parents or offspring, depending on the context. The general procedure for the Evolution

Strategies is as follows,

1. Parents are picked from the population (mating selection) and the new off-spring is

generated by recombination of the parent generation;

2. The new off-spring undergo random mutation and become new members of the
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population;

3. Environmental selection reduces the population to its original size.

Hence, evolution strategies employ the following main principles that are specified and

applied in the operators and algorithms it is also attempt to stress the differences to

other evolutionary algorithms where possible.

Environmental Selection is used as alleged truncation selection. Only the µ best

individuals from the population survive based on their fitness f (x). This is in contrast

to roulette wheel selection in genetic algorithms [54, 16], in evolutionary strategy only

fitness ranks are used. Thus, the environmental selection is deterministic in contrast

to evolutionary programming and like many other evolutionary algorithms where the

environmental selection has a stochastic component.

Mating Selection and Recombination picks individuals from the population to

become the new parents. Usually one can distinguish between two common scenarios for

mating selection and recombination.

Fitness-Independent mating selection and recombination are either deterministic or

stochastic but are not depended on the fitness values of the individuals. Hence the more

dominant process to drive the evolution toward better solutions is the Environmental

selection.

Fitness-Based mating selection and recombination rely on the rank of the fitness value

of the parents in a deterministic way. Therefore, the Environmental selection can be

neglected in that case.

Mutation and Parameter Control. A random and unbiased mutation process intro-

duces small changes to an individual and usually affect the variables altogether. The

impact and consequently the size of these changes depends on the endogenous parameters

that are altered over time. These parameters are also referred to as control parameters,

or endogenous strategy parameters, of which the step-size σ is an example. On the other

hand, exogenous strategy parameters such as the parent number µ are fixed throughout

the optimization. The parameter control is the most delicate part of evolution strategies

but indispensable and an central feature thereof.

Unbiasedness is the underlying process to introduce new ”information” to the variation

in the mutation or recombination mechanisms. Hence, it is important that this is

the antipode to the selection where a dominant bias towards better solutions occur.

Unbiasedness and maximum exploration are in accord and evolution strategies are
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unbiased in the following respects.

• The kind of mutation distribution (normal distribution), is preferred since of its

rotational symmetry and maximum entropy which corresponds to a maximum

exploration [62]. Decreasing the entropy would introduce prior information and

hence a bias.

• Endogenous strategy parameters and object parameters are unbiased under mu-

tation and recombination and mutation. Also, mutation usually has expectation

zero.

• It is important that invariance properties avoid a bias towards some specific

representation of the fitness function or search space. Thus, parameter control in

evolution strategies strive for invariance properties [63].

Algorithm 3: evolution strategy pseudocode

given;

n,λ,µ ∈N+
initialization;

x ∈Rn ,P = { x}, s

while not happy do

for k ∈ {1, . . . ,λ} do
sk = mut ates(s)

xk = mut atex (sk , xk )
P ← P ∪ {(xk , sk , f (xk )}

P ← sel ect −µ−best

A general pseudocode for the evolution strategy is shown in Algorithm 3. Given is a

population P with µ individuals. The individuals are represented as 3-tuple (xk , sk , f (xk ))

where sk are the endogenous strategy parameters (control parameters); typically these

determine the mutation through the step-size σ ∈ sk amongst other parameters, the f (xk )

represents the fitness or objective function f :Rn →R to be minimized and xk ∈Rn the

solution or object parameter as an element of the search space. In every generation, first

λ offspring are generated, thus from recombination of the ρ ≤µ parents from P , followed

by mutation of s and x. Accordingly, the new offspring is added to P and finally, the

best µ individuals are selected to retain P .

1.3.5.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The covariance matrix adaptation evolution strategy (CMA-ES) [14, 64, 65, 66] can be

seen as a de-facto standard in continuous domain evolutionary computation. As we will

see, the covariance matrix adaptation evolution strategy is a special case of the more
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general algorithm 3. First, we introduce and repeat some nomenclature before the focus

will be laid on a very specific case of covariance matrix adaptation algorithm. For a more

complete review of the covariance matrix adaptation algorithm we refer the reader to

Hansen et al [67] and [68].

Figure 1.16 illustrates of an actual optimization run with covariance matrix adaptation on

a simple two-dimensional problem [69]. The spherical optimization landscape is depicted

with solid lines of equal f-values and the population (dots) is much larger than necessary,

but clearly shows how the distribution of the population (dotted line) changes during

the optimization. On this simple problem, the population concentrates over the global

optimum within a few generations [69].

Figure 1.16 – Covariance Matrix Adaptation run for a simple two-dimensional problem
[69]

As elaborately described in [67], the well known (µ,λ)-selection scheme for the covariance

matrix adaptation algorithm, where the best µ of λ offspring selected from the next parent

population and all former parents are discarded, is permanently replaced by the elitist

(1+λ)-selection, that is, the parent population consists of a single individual generating

λ offspring and the best individual out of parent and offspring becomes the parent of

the next generation. In case where the parent is only generating one λ= 1 offspring, the

selection is termed (1+1). This elitist mechanism is used as selection schema since it

showed to be a simple and effective technique [70] indeed.

Figure 1.17 schematically explains the (1+1) selection whereas from x0 a new solutions
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x1 is created. But since from the total set {x0, x1} the solution x0 maintains the better

objective function value f (x0) it is selected to form the new generation. Through the

mutation of the endogenous strategy parameters sk the covariance and/or step-size are

modified (dotted red line) and a new solution x2 is produced. Since x2 is a better solution

than x0 it is picked as parent for the next generation and again the control parameters

are adapted (solid black line).

Figure 1.17 – (1+1)-Covariance Matrix Adaptation run

Nomeclature In the CMA-ES, each individual, a can be represented as a 5-tuple

a = [x, p succ ,σ, pc ,C ] with its candidate solution or parameter vector x ∈Rn , an averaged

success rate p succ ∈ [0,1], the global step size σ ∈ R+, an evolution path pc ∈ Rn, and

the covariance matrix C ∈Rn×n . The parameters {p succ ,σ, pc ,C } can be viewed as the sk

endogenous strategy parameters. In addition, following nomenclature is used [cite]:

f :Rn →R, x → f (x) is the scalar objective function to be minimized. For the MO-CMA-

ES, f :Rn →Rm , x → f (x) is the vector-valued objective function.

N (m,C ) is a multi-variate normal distribution with mean vector m and covariance

matrix C . If a random variable x is distributed according to the distribution

N (m,C ) it is notated as x ∼N (m,C )

Elitist (1+1)-CMA-ES algorithm is described within three routines. In the main

routine, the sampling procedure and the update routine in case the solution apar ent is

updated depending on whether the new solutions is better than apar ent according to the

(1+1)-selection.
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Algorithm 4: (1+1)-CMA-ES algorithm

g=0, initialize a(g )
par ent

repeat

a(g+1)
par ent ← a(g )

par ent

x(g+1)
new ∼N (x(g )

par ent ,σ(g )2
C (g ))

updateStepSize
(
a(g+1)

par ent ,λ(g+1)
succ

)
if f (x(g+1)

new ) ≤ f (x(g )
par ent ) then

x(g+1)
par ent ← x(g+1)

new

updateCovariance

(
a(g+1)

par ent ,
x(g+1)

par ent−x(g )
par ent

σ
(g )
par ent

)
g ← g +1

until stopping criterion is met ;

The step size is updated based on the success rate psucc =λ(g+1)
succ , after sampling the new

candidate solutions. That is, λ
(g+1)
succ is either 0 or 1 depending on whether the candidate

solution apar ent produced a better offspring or not. It implements the well-known

Procedure updateStepSize(a = [x, p succ ,σ, pc ,C ], psucc)

p succ ← (1− cp )p succ + cp psucc

σ←σ ·exp

(
1
d

p succ−p t ar g et
succ

1−p t ar g et
succ

)

heuristic rule that the step size should be increased if the success rate is high, and the

step size should be decreased if the success rate is low [71], whereas cp is the success

rate averaging parameter. The damping parameter d controls the rate of the step size

adoption and is chosen d = 1+ n
2 [70], where n is the dimensionality of the search space.

If the new candidate solution xnew was better than the parent individual, the covariance

matrix is updated as in the original CMA-ES [14]. The constants cc and ccov are learning

rates for the covariance matrix and evolution path, respectively. The update of the

evolution path pc is coupled to the value of p succ and the factor
p

cc (2− cc ) normalizes

the variance of pc [14] viewed as a random variable. Consequently, the evolution path pc

is used to update the covariance matrix as outer product. The new covariance matrix

then is a weighted mean of the old covariance and the matrix of the outer product.

Strategy Parameter are target success probability p t ar g et
succ , step size damping d success

rate averaging parameter cp , cumulation time horizon parameter cc , and covariance

matrix learning rate ccov . For derivation, comparison and detailed explanation see

[14, 65, 64, 67, 70, 72]. Default values are given in Table 1.1.
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Procedure updateCovariance(a = [x, p succ ,σ, pc ,C ], xstep ∈Rn)

if p succ<pthr esh
then

pc ← (1− cc )pc +
p

cc (2− cc )xstep

C ← (1− ccov )C + ccov ·pc pT
c

else
pc ← (1− cc )pc

C ← (1− ccov )C + ccov · (pc pT
c + cc (2− cc )C )

Table 1.1 – Default parameters for the (1+1)-CMA-ES

Step size control

d = 1+ n
2 , p t ar g et

succ = 1

5+
√

1
2

, cp = p t ar g et
succ

2+p t ar g et
succ

Covariance matrix adaptation:
cc = 2

n+2 ccov = 2
n2+6 pthr esh = 0.44

Initialization of the initial individual, a(0)
par ent are set to p succ = p t ar g et

succ , pc = 0, and

C = I , where p t ar g et
succ = 1

5+
√

1
2

. The covariance C is scaled and normalized given the lower

and upper constraints on the variables. The initial candidate solution x ∈Rn and the initial

σ ∈R+ must be chosen problem-dependent and x can be set uniformly random, given the

box-constrains, as well as the initial step-size which can be chosen as σ=p
V ar (x), based

on the variance of x.

Another approach usually taken [70, 73] is to perform a hypercube scaling which scales

the variables x to the range of [0 . . .1]. This transformation has also the benefit that for

the covariance matrix adaptation very basic initial parameters can be used [70, 70, 73].

Hence the entire optimization process is carried out in the transformed search space which

is scaled to the hypercube [0 . . .1]n and back-transformed for the objective evaluation.

1.3.6 Multi-objective Covariance Matrix Adaptation Evolution Strat-

egy

As we have seen, the most prominent feature of the evolutionary algorithms is that a

population of solutions is processed in every iteration, even though the population can

have size one. This feature alone attributes for a tremendous advantage for its use in

solving multi-objective optimization problems. Call to mind Section 1.2 that one of the

goals of an ideal multi-objective optimization procedure is to find the true Pareto-front

and hence as many optimal solutions as possible. The main idea now is to modify the

evolutionary algorithm in a way to so that a population of Pareto-optimal solutions can

be found.

Usually one distinguishes between multi-objective optimization algorithms that do not

use any elite-preserving operation and the so called Elitist multi-objective optimization
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algorithms [16]. Detailed description of the former category can be found in [16] and [74].

As the name suggests, the elite-preserving operator favours the elites of a population by

conserving their properties somehow to the next generation. We already encountered a

simple example of this mechanism by introducing the (1+1) selection scheme where the

offspring is directly compared to the parent and a direct selection is carried out on those

two solutions. No matter how elitism is introduced, it assures a certain deterioration and

thus it is evident to include it in the evolutionary algorithm [75].

Therefore, based on the (1+1)-CMA-ES we describe the multi-objective evolution strategy

according to [75], for a detailed description and a performance evaluation on benchmark

functions we refer to [76, 70, 77]. After a brief summary of the considered selection

mechanisms, which are based on the non-dominated sorting schema explained in Section

1.2.3 and crowding distance we finally describe the (1+1)-MO-CMA-ES briefly.

Pareto Optimality. As we have learned in Definition 3, the non-dominated set of the

entire search space is termed the Pareto-optimal set. That is, all solutions which are

member of the Pareto-optimal front are not dominated by any solutions in the search

space.

Multi-objective Selection. First, all elements in a population A of candidate solutions

are ranked based on their level of non-dominance. The solutions which are non-dominated

in A are denoted by ndom(a) = {a ∈ A |6 ∃ a′ ∈ A : a′ ≺ a} and get rank 1. Recursively, the

other ranks are defined by considering the set without the solutions with lower ranks. That

is, let dom0(A) = A,doml (A) = doml−1(A)\ndoml (A), and ndoml (A) = ndom(doml−1(A))

for l ∈ {1, ...}. Formally a ∈ A is defined as the level of non-dominance r (a, A) to be i iff

a ∈ ndomi (A).

Since solutions can have the same level of non-dominance, a second sorting criterion is

needed for ranking. We considered the crowding-distance [16] mechanism as it is used

in the NSGA-II algorithm and schematically presented in Figure 1.18. The basic idea

is to rank solutions with the same level of non-dominance A′ according to how much

they contribute to the spread (or diversity) of objective function values in A′. The

crowding-distance for M objectives of a ∈ A′ is given by

c(a, A′) =
M∑

m=1

cm(a, A′)
( f max

m − f mi n
m )

(1.4)

where f max
m and f mi n

m are estimations of the minimum and maximum value of the mth

objective and

cm(a, A′) :=
∞, if fm(a) = mi n{ fm(a′)|a′ ∈ A′} or fm(a) = max{ fm(a′)|a′ ∈ A′}

mi n{ fm(a′′)− fm(a′)|a′, a′′ ∈ A′ \ {a} : fm(a′) ≤ fm(a) ≤ fm(a′′)}, otherwise.

(1.5)
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Figure 1.18 – Crowding distance calculation [2]

Given the level of non-dominance and the crowding-distance, the relation is defined as

a ≺c,A′ a′ ⇔ r (a, A′) < r (a′, A′) (1.6)

for a, a′ ∈ A′. Hence, a is better than a′ when compared using ≺c,A′ if either a has a lower

(better) level of non-dominance or a and a′ are on the same level but a is in a ”lesser

crowding region of the objective space” and therefore induces more diversity.

Definition 4. a is better than a′ when;

• solutions a has a better rank

• If they have the same rank but solution a has a better crowding distance than

solution a′

The time complexity of the crowding-distance of N non-dominated solutions is O (M N log N )

[16]. The crowding distance is related to the spread of solutions, and the basic goal is to

get an even distribution of the Pareto front.

Other approaches such as the hyper-volume contribution [78, 79, 77] could also be con-

sidered for a second comparison criteria. Additionally, we propose the kernel density

estimation, as illustrated in Figure 1.19, for an easy to apply criteria. With this approach

one would get an good estimate for the spread of a solution and favour the less crowded

area of a front indeed.
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Figure 1.19 – The 6 individual kernels are the red dashed curves, the kernel density
estimate the blue curves. The data points are the rug plot on the horizontal axis [23]

MO-CMA-ES. In the λMO×(1+1)-MO-CMA-ES, a population of λMO (1+1)-CMA-

ES are maintained. The kth individual in the generation g is denoted as the tuple

a(g )
k = [x(g )

k , p(g )
succ ,σ(g )

k , p(g )
c,k ,C (g )

k ].

The λMO parents generate in each case one offspring in every generation g . The set Q(g )

is composed of the offspring and the parents. The step sizes of a parent and its offspring

are adopted depending on whether the mutations were successful, that is, whether the

offspring is better than the parent given the relation ≺Q (g ) . The covariance matrix update

of the offspring is then given through the change in parameter space. Both the covariance

matrix update and the step size are identical to the single-objective CMA-ES. The best

λMO individuals in Q(g ) sorted by ≺Q (g ) build the next parent generation.

Hence, the multi-objective optimization algorithm reads:
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Algorithm 5: λMO×(1+1)-MO-CMA-ES

g=0, initialize a(g )
k for k = 1, ...λMO

repeat

for k = 1, ...,λMO do

a′(g+1)
k ← a(g )

k

x ′(g+1)
k ∼N (x(g )

k ,σ(g )2

k C (g )
k )

Q(g ) = {a′(g+1)
k , a(g )

k |1 ≤ k ≤λMO}

for k = 1, ...,λMO do

updateStepSize
(
a(g )

k ,λ(g+1)
succ,Q (g ),k

)
updateStepSize

(
a′(g+1)

k ,λ(g+1)
succ,Q (g ),k

)
updateCovariance

(
a′(g+1)

k ,
x ′(g+1)

k −x(g )
k

σ
(g )
k

)
for i = 1, ...,λMO do

a(g+1)
i ←Q(g )

≺:i

g ← g +1
until stopping criterion is met ;

Here λ
(g+1)
succ,Q (g ),k

is defined as 1

λ
(g+1)
succ,Q (g ),k

=
1, if a′(g+1)

k ≺Q (g ) a(g )
k

0, otherwise
(1.7)

if the parent a(g )
k has successfully produced a better offspring, otherwise it is set to 0.

Additionally, Q(g )
≺:i is the ith best offspring in Q(g ) w.r.t ≺Q (g )

The Box constraints are handled such that the solution x is taking the upper or lower

limit if the boundaries are violated. More sophisticated approaches such as penalty

functions [80] or covariance manipulation [65] also exists but have currently not been

implemented.
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2 Semiempirical Methods

In this chapter, the theoretical quantum chemical framework employed is presented. The

aim is to give a general introduction on the semi-empirical methods and the essentials of

modern semi-empirical molecular orbital theory. However, the focus is set on the Neglect

of Diatomic Differential Overlap (NDDO) and Density Functional Tight Binding (DFTB)

methods and therefore their theoretical basis is elaborated. More details of the topics

can be found in standard textbooks [6, 81, 7, 8, 9, 82] or in the review papers cited in

different section of this chapter [83, 84, 85, 86, 87].

2.1 Introduction

Quantum mechanics provides the conceptual framework for comprehending chemistry

and the theoretical foundation for computational methods that model the behaviour

and electronic structure of chemical compounds. In contrast to the classical force field

approach, where a functional form with parameter sets are applied to model compounds,

this crude approximation of molecular modelling does not allow to describe chemical bond

breaking and are challenged to account for polarization of the environment besides other

deficiencies [88, 89, 90, 91]. Despite its drawbacks, the molecular mechanics methods

are very successful in describing systems sizes which exceed the capabilities of quantum

chemistry approaches or simulation time necessary to observe certain event occurrences.

Figure 2.1 illustrates simulation time and system sizes available with given methods.
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Chapter 2. Semiempirical Methods

Figure 2.1 – Different time and length scales accessible with different computational
methods.

Nevertheless, since for a vast majority of chemical problems and thus properties, the

electronic structure plays a crucial role, one will not be able to avoid a quantum mechanical

approximation. In principle one can distinguish three types of approaches in quantum

chemistry:

• ab initio methods

• Density functional theory

• Quantum-chemical semi-empirical methods

The former ab initio approach provides a convergent path to the exact solution of the

Schroedinger equation. However, because of its complexity those methods are very costly

and therefore restricted to relatively small molecules [92]. Density functional theory

(DFT) has developed to one of the most popular computational chemistry approaches

because of its favourable price/performance ration, enabling accurate calculations on

fairly large systems [93, 92, 94]. The biggest disadvantage of the density functional

theory methods is that there is no systematic path of improvement despite its first-

principle characteristics. The simplest variant of electronic structure theory are termed

Quantum-chemical semi-empirical methods since they involve integral approximations

and parametrizations that limit their accuracy but enable the access of larger systems

and longer molecular dynamics time scales and thus bridging the gap between molecular

mechanics and ab initio calculations. All these semi-empirical methods employ a simple

strategy. The first-principle formalism is the base on which rather drastic assumptions

and simplifications are proposed. Typically one neglects many of the less important terms

in the underlying equations allowing a drastic speed up of the resulting calculations.

The errors introduced through those approximations are attempted to be compensated

through empirical parameters which are incorporated into the formalism and fitted
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against reference data. Needless to say that it depends on the approximations and thus

semi-empirical method, if a chosen model retains the essential physical properties of

interest and it can well be that very important properties are getting lost on the way.

Hence it is important for a systematic benchmarking and validation to explore the limits

of any given method and underlying model. In this chapter, we consider semi-empirical

methods that are based on the molecular orbital (MO) theory, which was proposed in

the early twentieth century and revolutionized the study of bonding by approximating

the positions of bonded electrons (molecular orbitals) as Linear Combination of Atomic

Orbitals (LCOA). First a brief historical overview and basic concepts are given followed

by a short summary of two major methods in semi-empirical approaches

2.2 Historical Overview

Hückel proposed in 1930 one of the earliest semi-empirical approaches in quantum

chemistry which was called pi-electron or Huckel method. It is a very simple linear

combination of atomic orbitals for the determination of energies of pi electrons in

conjugated hydrocarbon systems, such as ethene, benzene and butadiene, see section

2.3.2. Later, it was extended to conjugated molecules such as pyridine, pyrrole and furan

which contain other atoms than carbon. The extended Hückel method [95] developed by

Roald Hoffmann [96] since 1963 is based on the Hückel method but also includes the sigma

orbitals, thus describing all valence electrons. It has been applied in many qualitative

studies of organometallic and inorganic compounds. These inceptions of semi-empirical

methods have had a lasting impact on physical chemistry since they guided the thinking

and development of qualitative molecular orbital theory, and hence employed a way for

rationalizing chemical phenomena in terms of orbital interactions.

Those early type methods only included one-electron integrals and therefore are non-

iterative and mathematically simpler to solve. The semi-empirical self-consistent field

(SCF) methods on the other hand are taking into account the two-electron integral

explicitly. The very first of such approaches was also restricted to pi electrons and based

on the PPP (Pariser-Parr-Pople) formulation [97]. The resulting method is based on the

zero differential overlap (ZDO) approximation which found its way into many succeeding

semi-empirical methods and could reliably describe the electronic spectra of unsaturated

molecules [98]. The generalisation to valence electrons was first proposed by Pople [99]

by explicitly including the electron-electron repulsion terms, but neglecting many of them

and approximating some. The modelling of the integral terms, that is the neglect of

the differential overlap, obey rotational invariance and other consistency criteria and

give rise to different approximations which are hierarchical specified; complete neglect of

differential overlap (CNDO), intermediate neglect of differential overlap (INDO) [100]

and neglect of diatomic differential overlap (NDDO) methods (see section 2.3.3.1).

The parametrization of those earlier methods was carried out to reproduce ab initio

Hartree-Fock (HF) results with a minimal basis set [5]. Hence, those earlier calculations
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could at best reach the accuracy of the target HF methods, which meanwhile are known

to be rather poor. Nevertheless, the original CNDO/2 method [101] and the development

thereof, the INDO approach, are the most prominent example of early parametrizations

introduced by Pople [99, 102]. The methods are now rarely used in their original form

with some exceptions but are basis for several other methods. Indeed, Dewar et al.

pursued another parametrization strategy aiming at a realistic description of ground-

state potential surfaces and used experimental reference data. This path culminated in

the MINDO/3 [103] method which was based on the INDO approach and the MNDO

[104, 105] and AM1 [106] methods which grounded on NDDO approximations. In turn, a

different parametrization of the MNDO model resulted in the PM3 [107] method, which

is formally very close to AM1 but differs in the core repulsion function and the RM1

variant which is a re-parametrization of AM1 with a much larger set of reference data

yielding improved results.

There are two other noteworthy INDO-based approaches in the time before 1990. The

SINDO1 method [108] developed by K. Jug and co-workers [109] includes symmetric

orthogonalised one-electron integrals and d orbitals for atoms of the second row of

the periodic table. The SINDO parametrization was carried out against ground-state

properties and the method performs better for hypervalent compounds than other semi-

empirical methods. A further development and modification lead to the MSINDO method

[110]. A different direction was followed by Zerner and co-workers in the development

of the INDO/S method [111, 112] that targets the calculation of electronic spectra,

in particular vertical excitation energies, using configuration interaction with single

excitations (CIS). INDO/S was parametrized at the CIS level and turned out to be rather

successful in spectroscopic and related areas.

In the time since 1990, the MNDO model was progressed to include a spd basis [113, 114, ?],

which in turn enabled the treatment of heavier elements and led to improved MNDO/d

results. The extension to a larger spd basis was embraced and also used for the latest

general purpose parametrization such was PM6 and PM7 [33, 115]. Those two NDDO

based methods cover essential the entire periodic table and hence are successfully applied

to compute molecular and solid-state properties. Another general-purpose parametrization

of the MNDO model employing a functional group-specific modification of the core

repulsion function led to the PDDG/MNDO and PDDG/PM3 variants [116]. The

Pairwise Distance Directed Gaussian (PDDG) modification apparently provides good

description of the van der Waals attraction between atoms, and the PDDG/PM3 model

appears to be well suitable for calculations of intermolecular complexes. Hence, the

modification of the empirical core repulsion function in the MNDO model was adopted

in various special-purpose parametrizations.

Exceeding the MNDO model, some orthogonalization models (OM1, OM2 and OM3)

have been proposed that contain orthogonalization correction in the one-electron terms of

the NDDO Fock matrix to account for the effects of Pauli exchange repulsion [117, 118].

The explicit representation of Pauli exchange repulsion in the OMx families was shown

to improve the description of the electronically excited states, conformational properties,
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and non-covalent interactions.

Conceptually, the semi-empirical methods mentioned above are models to simplify ab

initio molecular orbital approach. On the other hand, a semi-empirical tight-binding (TB)

approach of DFT was also developed and termed DFTB [119]. The method was extended

to a self-consistent charge model (SCC-DFTB) [120]. Despite the conceptual origin and

the derivation of the DFTB approaches seem different from those of conventional semi-

empirical procedures, they share many similarities not only in implementation and actual

computational procedures. The DFTB method embrace several integral approximations

and extensive parametrization in a way such that it is appropriate to consider them as

semi-empirical methods on par with the traditional ones [84].

In the present chapter, we focus on the methods that are nowadays of relevance since the

role of semi-empirical calculations has changed during the past 40 years. Historically, the

MNDO-type methods (namely MNDO,AM1 and PM3) served as workhorse for quantum-

chemical computations and at present, these methods are still widely used, along with

more recent versions like PM6. As DFT gained traction in the ab-inito community, the

semi-empirical approach thereof DFTB entered the field of biochemistry and material

science and was applied successfully and remains popular. Therefore we concentrate on

the MNDO-type and DFTB approaches in the following.

2.3 Methods

In this section, we provide an review on the beginnings of the semi-empirical methods as

well as MNDO and DFTB approaches. For a broader description of the formalisms, the

reader is advised to consult several comprehensive review articles and publications.

2.3.1 Basic Concepts and Theory

A semi-empirical model or scheme is defined by the underlying theory and the modalities

of approximation and hence the resulting interaction that is included by the model or

the level of integral approximations. On the other hand, the resulting method is based on

a model but depends on the implementation and parametrization implied on the model.

It should be mentioned that although methods and models are related, there may be

large differences and caution is advised by drawing conclusion from a method to a model.

For example, the AM1 and PM3 method are both based on the MNDO model but give

different results for different properties. Hence, to explore the boundaries of a model in

principle all limits of the entire methods and parametrizations thereof would need to be

explored.

All the MNDO models employ a Hartree-Fock SCF-MO treatment with a minimal basis

set for the valence electrons and the core electrons are accounted through a reduced nuclear

charge. Dynamic correlation effects are included in an average approach by a suitable

representation of the two-electron integrals and certainly the overall parametrization.
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Model

Method

Implementation

Parametrization

Figure 2.2 – Different layers from model to parametrization

The standard equations are reduced by the integral approximations to neglect all three-

center and four-center two-electron integrals. The CNDO model uses zero-differential

overlap for the two-electron integrals, whereas INDO includes the integrals that are over

orbitals centred on the same atom (one-center two electron integrals). Finally, NDDO

adds all two centre integrals for repulsion between a charge distribution on one center

and a charge distribution on another centre. In that way, NDDO retains the higher

multi-poles of charge distributions in the two-center interactions and hence accounts for

anisotropies in these interactions. As such, the approximations are applied to all integrals

that involve Coulomb interactions, and to the overlap integrals that appear in the HF

secular equations. The integrals are either determined directly from experimental data,

calculated exactly from the corresponding analytic formulas or expressed parametrically

and fitted thereafter. Resolving from experimental data usually is only possible for the

one-center integrals, where atomic spectroscopy data is available. The introduction of a

parametric expressions need careful analysis of the corresponding analytic integral and is

a difficult and challenging procedure. The decision on how the integrals are represented

is a mayor part of the implementation of a model and therefore an important component

of the resulting method. The remaining task is to parametrize the implementation to

determine optimal values from a given set of reference data. Commonly, experimental or

high-level ab initio data are used as reference set and different optimization algorithms

with diverse functions were applied. It has to be noted that the quality of the results

strongly depend on the parametrization and major difficulties remain to guarantee

parameter transferability for different setups. One should be aware that it is challenging

to estimate the limits of a parametrization since the reference set only covers a certain

scope. For example, could the parametrization of Hydrogen vary significantly for different

chemical environments. Hence, caution is advised when assessing methods based on

parametrizations since it is not clear whether the limitations are originated on the level

of the model, implementation or parametrization.
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2.3.1.1 LCAO-SCF

As mentioned, the essence of modern semi-empirical molecular orbital theory is based

on the two approximations: self-consistent field (SCF) [121] and linear combination of

atomic orbitals (LCAO) [122]. There are elaborate description available in many standard

textbooks [87, 7, 6, 8] but for understanding MNDO-like approaches the comprehension

is crucial. We can write the Hamiltonian for a molecule that consists of M nuclei and N

electrons as

H =
N∑

i=1

1

2
∇2

i +
M∑

A=1

1

2MA
∇2

A −
N∑

i=1

M∑
A=1

ZA

RAi

+
N∑

i=1

N∑
j>i

1

ri j
+

M∑
A=1

M∑
B>A

ZA ZB

RAB
(2.1)

where the indices i and j run over the electrons and A and B over the nuclei. The

separate terms that make up the Hamiltonian are defined in Table 2.1.

Table 2.1 – Definitions of the Individual Term in Eq. 2.1

Term Definition Variable

N∑
i=1

1

2
∇2

i Kinetic energy of the electrons
∇i = the first derivative of the po-
sition of electron i with respect to
time (velocity)

M∑
A=1

1

2MA
∇2

A

Kinetic energy of the nuclei (zero
within the Born-Oppenheimer ap-
proximation)

∇A = the first derivative of the
position of the nucleus A with re-
spect to time (velocity)

N∑
i=1

M∑
A=1

ZA

RAi
Nucleus-electron attraction

ZA is the nuclear charge of atoms
A and RAi

is the distance between
atom A and electron i

N∑
i=1

N∑
j>i

1

ri j
Electron-electron repulsion

ri j is the distance between elec-
trons i and j

M∑
A=1

M∑
B>A

ZA ZB

RAB

Nucleus-nucleus repulsion
(constant within the Born-
Oppenheimer approximation)

RAB is the distance between atoms
A and B

As commonly implied, we make use of the Born-Oppenheimer approximation [123], thus

the nuclei moves much slower than the electrons than the former can be regarded as being

stationary. This results in the fact that the nucleus-nucleus repulsion can be regarded as

a constant and can be neglected in the electronic Hamiltonian:

H = Hnucl ear +Hel ectr oni c = Hnucl ear +
N∑

i=1

1

2
∇2

i −
N∑

i=1

M∑
A=1

ZA

RAi

+
N∑

i=1

N∑
j>i

1

ri j
(2.2)

and thus the total Hamiltonian H can be separated into nuclear and electronic component.

Hence, the total energy can be written as the sum of the nuclear repulsion energy and
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the electronic energy defined by the Hamiltonian Helectr on :

Etot al = Eel ectr oni c +
M∑

A=1

M∑
B>A

ZA ZB

RAB
(2.3)

The electronic energy is obtained solving the Schroedinger equation [3] from the electronic

wave-function. The wave-function Φel ectr oni c on the other hand is a function of the

position and spins of the N electrons of the system:

Φel ectr oni c =Φ(x1, x2, x3, ..., xN ) where xi = {ri ,ωi } (2.4)

Where ri represents the position of electron i and ωi its spin. Evidently, the wave-function

is a function of 4N variables. Since the Schroedinger equation can only be solved for one

electron, we have to introduce approximations. The first of these is the SCF (also known

as mean-field or Hartree-Fock) approximation [4, 124]. Essentially, rather than solving

the complete Schroedinger equation for many particles, we approximate the many-particle

solution in terms of many one-electron wave-functions, which are solvable. Hence, the

approximation writes as:

Hel ectr oni c ≈
N∑

i=1
hi (2.5)

where hi is the one-electron Hamiltonian for electron i . This results in the Hartree

product ΦHP , which is an approximation for a many-electron wave-function Φel ectr oni c

ΦHP (x1, x2, ..., xN ) =χ1(x1)χ2(x2) · · ·χN (xN ) (2.6)

in Eq. (2.6) χi are the spin orbitals, which are one-electron wave-functions. The

Schroedinger equation based on the Hartree approximation can be written as

HΦHP = EΦHP

so that the eigenvalues εi of the one-electron wave-functions χi can be summed to give

the electronic energy:

Eel ectr oni c =
N∑

i=1
εi

Because electrons are fermions, they must obey the Pauli exclusion principle [125], which

in terms can be formulated as the antisymmetry principle and that states that the wave-

function must be antisymmetric with respect to the exchange of any two electrons. Fock

pointed out that the Hartree product does indeed not obey the antisymmetry principle.

Slater then proposed that the wave-function suggested by Fock can be expressed as a
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determinant, ΦSl ater [126]

ΦSl ater = 1p
N !

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χN (x1)

χ1(x2) χ2(x2) . . . χN (x2)
...

... . . .
...

χ1(xN ) χ2(xN ) . . . χN (xN )

∣∣∣∣∣∣∣∣∣∣
(2.7)

Commonly, this expression is known as the Hartree-Fock (or SCF) wave-function. Nev-

ertheless, one needs to find an expression for the spin orbitals χi . This is where the

almost universal LCAO approximation, introduced by Erich Hückel [127], comes into

play. Hückel s proposal was that molecular orbitals (χi ) can be represented as a linear

combination of atomic orbitals. For a system constituted of N atomic orbitals (AOs)

χi =
NAOs∑
j=1

c i
jϕ j

where c i
j is the coefficient of atomic orbital ϕ j in molecular orbital χi , and the coefficients

are normalized. Because one still cannot solve for the wave-function directly, the

variational principle is used to find the correct wave-function with the lowest energy.

2.3.1.2 Implications of LCAO-SCF Theory

Although the LCOA-SCF theory is very successfully applied, it has two serious limitations

that needed to be pointed out. The first is a consequence of the SCF approximation and

also known as electron correlation.

Physically, the simplification of the Hartree product means that the electrons do not

feel each other individually rather each electron feels the average electron density of

the others. Thus, individual electrons can not avoid each other instantaneously, which

they would given their negative charge. Hence, the SCF approximation means that the

electron-electron repulsion is overestimated. This effect, as pure consequence of the SCF

approximation is also know as the dynamic correlation [128].

The second implication of the LCAO-SCF approximation deals with the limitations

placed on the wave-function by the atomic orbitals used to form the MOs. Although the

LCAO approximation is very intuitive and provides qualitative understand of bonding

effects [129], it nevertheless has no physical basis. Even though it is very convenient

for calculations, numerical grids or combination of non-atom-centred functions could be

used to describe MOs instead. A serious limitation however is that only wave-functions

that are a linear combination of atomic orbitals can be described. The atomic orbitals

usually are also refered to as basis set in ab initio and density function theory calculations.

Prevailing MNDO-type semi-empirical methods use single-valence basis sets resulting in

a representation of the valence shell atomic orbital by only one basis function. Thus, the

size of the orbital is fixed, even though in reality some valence orbitals are more or less
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diffuse than others.

2.3.1.3 Parametrization

Common to all the semi-empirical methods is that they contain adjustable parameters.

Methods based on the same model may differ in the values of these parameters only.

Provided that the model to wit the set of approximations is sufficiently flexible and

physically realistic, the accuracy of a semi-empirical method depends on only two

quantities; the accuracy and range of the reference data used for parametrization and the

thoroughness of the optimization procedure. As we shall see in the last chapter, those

two properties are not to be underestimated.

Data The set of reference data used in parametrization must satisfy several criteria:

Clearly, it must be as accurate as possible and represent the targeted system and

properties thereof. It is not obvious how to select the reference data in advance. In the

last chapter we will give the example of bulk water as target system and the quest of

finding the right reference data to wit answering the question if it is possible to reproduce

liquid water properties from cluster reference data.

Several useful collections of reference data are available, such as the NIST database of

atomic energy levels [130], reference heats of formation [131], and atomic and molecular

ionization potentials [132], and the Cambridge Structural Database [133] for molecular

geometries. Despite the vast amount of available experimental reference data, important

gaps or deficiencies exits. Where data are missing or are incomplete , one can use

reference data generated from high-level theoretical calculations. Of course, great care

must be taken relining on the accuracy of all calculated reference data, since the objective

is to model the real world.

There is no explicit literature addressing the relation of reference data, parametrization

and target system. It is crucial not only for the understanding of the target system but

also for the parametrization and for the underlying semi-empirical model that more time

and effort is invested to examine this context. Additionally, more systematic approaches

are needed as selection process for reference data and given the computational power

nowadays more resources should also be spend in investigating the impact and relation

thereof.

Parametrization Techniques and Strategies In principle one has the choice between

empirical reference sets (i.e geometries from experiments and energies from measure-

ments) or ab-inito calculations. The former approach was advocated for the MNDO

parametrization. Thus, the disadvantage is that usually there is fewer data available as

for standard computed values as state above.

The main decision on parametrization strategies is the inclusion of objectives. Hence,

should geometries, forces, energies, dipoles and much more be included in the optimiza-
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tion procedure? Commonly, people applied a scalarization approaches to combine these

properties [107, 106, 33]. Thus, the important question was how these objectives are

assembled and then optimized. Therefore, arbitrary normalization and weighting were

employed and then standard optimization algorithms (such as BFGS [134]) used to obtain

final parameter sets. When in the beginnings of the semi-empirical methods mostly

geometries and energies played a crucial role, recently the inclusion of forces became

popular. These techniques are usually referred to as ’force-matching’ algorithm and high

accurate ab-inito force and energy calculations are used as reference systems.

2.3.2 Hückel Molcular Orbital Theory

The Hückel Molecular Orbital (HMO) method is a simple yet powerful approach towards

qualitative understanding of physical properties such as stabilities and chemical re-

activities of organic π-systems. Although the HMO results are admittedly crude and

approximate, they are capable of explaining and predicting a large amount of interesting

chemistry and are in good agreement with either chemical experience or intuition.

Assuming that the total wave function for poly-electronic systems can be factored into

sets of independent, non interacting electronic systems Φ, each of which specify the

behaviour of a particular set of electrons. Considering molecules where electrons can be

described as either being σ or π-electrons, then it follows that

Ψpol yelect =ΦσΦπ (2.8)

and further

Etot = Eσ+Eπ (2.9)

is valid approximation for systems such as hydrocarbon systems given that σ-systems

in such cases are independent of the π-system, which usually is referred to as sigma-pi

separability. It can be justified by the orthogonality of σ and π orbitals in planar molecules

and hence also limited to planar systems. In addition, only π-electron molecular orbitals

are included, because these determine the general properties of the particular molecules.

A further assumption is that Φπ can be expressed as a very simple linear combination

of atomic orbitals (LCAO see detailed explanation in subsection 2.3.1.1). Hence, the

system can be written as

Φπ =
∏

j
ψ j (2.10)

where each ψ j is of the form

ψ j =C j 1φ1 +C j 2φ2 +C j 3φ3 +·· ·+C j nφn =
n∑

i=1
C j iφi (2.11)
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Within that scope, the Schrödinger equation and simplifications based on orbital symmetry

are introduced and solved accordingly. The Hückel method can also be derived from the

Ritz method with a few further assumptions concerning the overlap Matrix S and the

Hamiltonian matrix H . Hence, the overlap matrix S is assumed to be the identity matrix

meaning that the orbitals are considered orthogonal and there is no overlap between the

orbitals. The Hamiltonian matrix H = Hi j is parametrised in the following way:

• Hi j =α for C atoms and α= hAβ for atoms A.

• Hi j = β if the two atoms are next to each other and both C, and kABβ for other

neighbouring atoms A and B

• Hi j = 0 in any other case

As one can see, the Hückel molecular orbital method is a very powerful educational tool,

and the method’s details do appear in many chemistry textbooks [6, 81, 7].

2.3.3 Neglect of Diatomic Differential Overlap

The NDDO approximation is the foundation for most of the modern (MNDO-like) semi-

empirical MO theories. Apparently, the NDDO approximation appears to be extremely

robust and does not lead to identifiable systematic errors, as have been identified by

previous approximations (INDO). In the Hartree-Fock theory, calculating the electron-

electron repulsion requires all integrals of the type (µν|λσ) to wit all integrals in which

the indices µ,ν,λ and σ vary from 1 to NAO are needed. This is why the result is very

large number of integrals (formally N 4
AO/8) that need to be calculated and processed

every iteration of the SCF procedure. The NDDO approximation reduces all integrals

(µν|λσ) to zero in which either atomic orbitals µ and ν or λ and σ are on different atoms.

The combinations µν and λσ are known as charge distributions, so that the NDDO

approximation can also be expressed as meaning that we only consider integrals between

charge distribution µν and λσ situated on single, but no necessarily the same, atoms.

Therefore, NDDO reduces the problem of calculating and using the two-electron integrals

(electron-electron repulsion) from one of four centres to one of only two. Essentially, we

calculate only one- and two-center two-electron integrals ignoring three- and four-center

two-electron integrals.

Clearly, one needs an efficient technique to calculate the reaming number of integrals.

Usually in ab-initio and DFT calculations the use of basis sets are employed. These basis

sets are based on Gaussian functions since these are particularly suitable for calculating

the integrals. Gaussian orbitals have the form:

φm
l (r ) = Y m

l e−ζr 2
(2.12)
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where Y m
l is the angular part (spherical harmonic function) of the orbital with principal

quantum number l and angular momentum quantum number m. The reaming expression

e−ζr 2
specifies the radial behaviour of the wave-function, where ζ is the exponent that

describes how fast the wave-function falls off with increasing distance r from the nucleus.

Despite their almost universal use as atom-centred basis sets in ab-initio and DFT

calculations, Gaussian functions are far from ideal. Since the distance from the nucleus is

square in the exponent, the wave-function falls off faster than it should and also describes

the wave-function at the nucleus not correctly. A better take would be to use Slater

orbitals, with the form

φm
l (r ) = Y m

l e−ζ|r | (2.13)

However, given that the two-electron integrals for Slater orbitals are very expensive to

calculate, they are seldom used despite their inherent advantages.

Most MNDO-type methods use Slater-type orbitals, but must therefore resort to a fast,

approximate technique for obtaining the two-electron integrals. This is the multi-pole

approach introduced with MNDO [104]. The idea is that the interaction between Slater

orbitals are approximated as interaction between electrostatic monopoles, dipoles, and

quadrupoles, which allows the integrals to be calculated very effectively and with the

required accuracy.

In standard MNDO-like theories, an important approximation is that the basis set (atomic

orbitals) is assumed to be orthogonal to wit the orbitals have zero overlap with each

other. The benefit of this assumption is that the initial orthogonalization step in the

SCF calculation can be saved, which would slow semi-empirical calculations considerably.

Yet, one of the most difficult topics in semi-empirical theories is the treatment of the

nucleus-nucleus repulsion. Although in Equation 2.1 and Table 2.1 the Coulomb repulsion

seems to be of a simple form, in fact in MNDO-type treatment this is a fairly complex

entity. The problem arises from the fact that not all of the Coulomb interactions are

treated equally. More explicit, the nucleus-nucleus repulsion is treated exactly according

to Equation 2.1 but introducing the NDDO approximation results in some neglect of

Coulomb terms involving the electrons. More specifically, the long-range behaviour both

of the electron-electron and the nucleus-electron integrals is not correct. Hence, the

physically correct nucleus-nucleus interaction in term Equation 2.1 would lead to a net

repulsion between neutral atoms or molecules at distance outside their van der Waals

radii. Hence, an artificial screening effect needs to be introduced to overcome those

shortcomings. The MNDO methods usually employ the nucleus-nucleus repulsion E AB in

the following form

E M N DO
AB = ZA ZB (sA sA|sB sB )(1+e−αA RAB +e−αB RAB ) (2.14)

where the two constants αA and αB are adjustable parameters specific to the elements A

and B respectively and the electron-electron integrals are treated accordingly. However,

with the nucleus-nucleus repulsion taking the form of Equation 2.14 one is not able
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to reproduce hydrogen bonds [135] likely attributed to the repulsion being too strong.

Therefore, this term was modified by the addition of up to four Gaussian terms in

MNDO/H. Nevertheless, the use of these additional correction is not without hazard

because they can lead to spurious minima [136] and introduces a large number of

additional parameters which is undesirable. A more practical solution was found by

introducing two-center temrs in to the nucleus-nucleus repulsion, as suggested originally

for AM1 by Voityuk and Rosch [137]. The term of the nucleus-nucleus repulsion becomes

E M N DO
AB = E M N DO

AB (1+δAB e−αAB RAB ) (2.15)

where δAB and αAB are parameters specific to the pair of elements AB .

The fundamental problem, that the Coulomb interactions are not treated equally remains

with all suggested corrections to the nucleus-nucleus repulsion. Additionally, the inclusion

of a two-center potential can adversely affect the parametrization of other such interactions

because the effects of the two potentials are not independent of each other. Whenever

possible, two-center potential should be avoided because they are intrinsically problematic.

This becomes obvious when parametrizing for the periodic table, since not only atomic

parameters but also all atomic pairs need to be parametrized.

2.3.3.1 MNDO

The oldest of the NDDO methods is the in 1977 published MNDO [104, 105]. It was

a major improvement over the at that time popular MINDO/3 [103] in accuracy and

efficiency. Two main reasons can be accounted for the increase in accuracy: First, a

semi-empirical method could represent the Ion-pair/Ion-pair interaction of the type found

in hydrazine and hydrogen peroxide. And second, reference data based on experimental

results for molecular systems were used in the parametrisation process. Nevertheless,

since the method was applied to more and more species, various systematic errors became

apparent, the most serious being that hydrogen bonds could not be reproduced.

2.3.3.2 AM1

Covalent bonds are stronger than hydrogen bonds which can be best represented by

three terms: an electrostatic, a covalent, and a third term variously called instantaneous

correlation, dispersion, or van der Walls interaction. MNDO included the covalent and

electrostatic terms, but left out the VDW interaction. To incorporate the effect of the

VDW term, during the development of AM1 the core-core interaction in MNDO was

modified by the addition of simple Gaussian functions to provide a weak attractive

force. The intention was that this extra stabilization would allow hydrogen bond to form.

Parameters for H, C, N, and P were optimized using a larger set of reference data, and

the resulting AM1 methods was published in 1985 [106]. It has to be noted that over
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the following few years, parameters were optimized for more elements but with fixed

parameter sets of the previous elements. Needless to say, that this resulted in a piecemeal

method - where the parameters depended on the sequence in which the parametrization

was carried out. Hence, the parametrization process lacked a systematic approach which

unfortunately continues to this day.

Two different philosophical approaches were explored that time carrying out parameter

optimization. One, advocated by J. Steward, was to provide the parameter optimization

procedure with a wide range of reference data, in the hope that if enough data were

provided, the underlying rules of chemistry would be picked up by the parameter

optimization. The other approach, advocated by Michael Dewar, used chemical knowledge

to guide the progress of the optimization. The size of the training set could be kept

minimal through careful selection of the reference data. As Dewar had an encyclopaedic

knowledge in this field, his approach had obvious merit and therefore was used in the

development of AM1.

2.3.3.3 PM3

In contrast to the parametrization approach taken in AM1, a huge amount of reference

data was used in the training set for the development of PM3 [107, 138]. Initially, 12

elements were optimized simultaneously. In contrast to AM1, no external constraints

based on chemical experience were applied in the process. Comparing PM3 with AM1, it

was found that the average errors for common properties, such as heats of formation,

and that it follows that PM3 outperforms AM1. The predictive power of PM3 versus

AM1 on the other hand is very difficult to answer. Maybe because of this, PM3 was

never as widely used as AM1. PM3 was extended to include most [139], and finally all

[140], of the main group elements. Nevertheless, the same problematic remains for the

extension of PM3 that the later parametrization were carried out using fixed values for

the elements that had previously been parametrized.

2.3.3.4 PM6

In the beginning of 2000, Voityuk and Rosch [137] attempted to improve the accuracy

of a method for modelling systems containing molybdenum and hence proposed using

diatomic core-core parameters [ref section NDDO]. Initially, this modification was utilized

using various pairs of elements in the first PM3 set. It could be shown that the average

error decreased. Hence, the core-core term in the original MNDO method was replaced

with a simple diatomic parameter function. A few other minor modifications were made

[137]. Finally, parameters for the whole of the main group and some additions, 42

elements in all, were then optimized simultaneously. Two other approaches had been

considered, but these were not complete (PM4) or not published (PM5), so the new

method was termed PM6 [33].
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2.3.4 DFTB

Density functional tight binding can be derived from a Taylor series expansion of the

Kohn-Shame density functional total energy [141] around a properly chosen reference

density ρ(r ). Rather than minimizing the energy and finding the electron density ρ(r ), a

reference density ρ0 is assumed and perturbed by some density fluctuation,

ρ(r ) = ρ0(r )+δρ(r ) (2.16)

and the exchange-correlation energy functional is then expanded in a Taylor series up to

the third order and the total energy can be written as

E = 1

2

∑
ab

Za Zb

Rab
− 1

2

∫ ∫
ρ0(r )ρ0(r ′)

|r − r ′| dr dr ′−
∫

V XC [ρ0]ρ0(r )dr +E XC [ρ0]

+∑
i

ni

〈
ψi

∣∣∣Ĥ 0
∣∣∣ψi

〉
+ 1

2

∫ ∫ (
1

|r − r ′| +
δ2E XC [ρ]

δρ(r )δρ(r ′)

∣∣∣∣
ρ0

)
δρ(r )δρ(r ′)dr dr ′

+ 1

6

∫ ∫ ∫
δ3E E X [ρ]

δρ(r )δρ(r ′)δρ(r ′′)

∣∣∣∣
ρ0

δρ(r )δρ(r ′)δρ(r ′′)dr dr ′dr ′′

= E 0[ρ0]+E 1[ρ0,δρ]+E 2[ρ0, (δρ)2]+E 3[ρ0, (δρ)3] (2.17)

Depending on the inclusion of terms from this expansion, different models appear, which

can be viewed as successively build on top of each other. The first of this models

was the first-order non-self-consistent DFTB1 [142, 143], followed by the self consistent

second-order DFTB2 (also called SCC-DFTB) [120] and the third-order extension DFTB3

[144, 86, 145, 146].

2.3.4.1 DFTB1

The DFTB1 method uses the first two contribution of equation (2.17), E 0[ρ0] and

E 1[ρ0,δρ]. Also in DFTB, a linear combination of atomic orbitals (LCAO) ansatz of the

KS orbitals are used:

ψi =
∑
µ

cµiφµ (2.18)

Where the AOs are obtained from DFT calculations of the corresponding atoms. Again,

the basis is restricted to the valence shell of the atoms. Within the LCAO approach we

get a general eigenvalue problem of the form∑
ν

cνi (H 0
µν−εi Sµν) = 0 with ν ∈ b and µ ∈ a, (2.19)
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with the Hamiltonian matrix elements H 0
µν and the overlap matrix elements Sµν. Con-

sidering the orthogonality constraint and writing the effective KS potential Ve f f as a

superposition of atomic-like potentials (Ve f f ≈
∑

c V c
e f f ), one can write

(φµ|V c
e f f |φν) → (φµ|

[
V c

e f f −
∑
Kc

|φc
K )εKc (φc

K |
]
|φν) withν ∈ band µ ∈ a, (2.20)

where εKc is the energy of a core state K at center c. The potential can also be viewed as

pseudo-potential with its core correction term. This term only appears in the three-center

terms of the Hamiltonian matrix elements (a 6= b 6= c) and in the ’diagonal terms’ ν,µ ∈ a

with c 6= a, whereas the ’full’ potential appears in all the other terms

H 0
µν =

(
φµ|− 1

2
∆2 +∑

j
V c

e f f

)
−∑

c

∑
Kc

(φµ|φc
K )εKc (φc

K |φν) µ,ν 6∈ {c} (2.21)

Hence, the neglect of the three-centre terms and pseudo-potential contributions give a

two-centre approximation for the Hamilton matrix elements

H 0
µν = (φµ− 1

2
∆2 +V a

e f f +V b
e f f |φν), µ ∈ {a}, ν ∈ {b}. (2.22)

The approximations lead to the same structure as in tight binding or extended Hückel

method; Nevertheless, all matrix elements are calculated within DFT, since the AO basis

set φµ is computed by solving the DFT-KS equations for atoms. Pure AOs would be too

diffuse for a minimal AO basis set; therefore, the atomic KS equations are usually solved

applying an additional (harmonic) potential to the atomic KS equations, which in turn

leads to ’compressed’ AOs, as introduced by Eschring [147][
−1

2
∆2 + ve f f [ρatom]+

( r

r 0

)2
]

]
φµ = εµφµ. (2.23)

The confinement radius is taken to be roughly two times the covalent radius of the

atom according to [143]. The electron density of the neutral atoms a are contained in

the potentials V a
e f f =Ve f f (ρa). This density is usually also determined from atomic KS

equations as well as the AO basis set. Nevertheless, different confinement radius can be

chosen for these initial densities ρa and therefore two parameters per element have to be

determined, the confinement radius for the AO basis r0 and the the confinement radius

for the initial density, r d
0 .

Now, with initial density and AO basis determined, the KS equations can be solved

(equation (2.19)) leading to the energy (ni :occupation number of KS orbital i)

E 1 =∑
i

ni
∑
µν

c i
µc i

νH 0
µν =

∑
i

ni εi (2.24)

This is the sum of the occupied KS energies or the electronic energy of the DFTB method.

Additionally, to get the total energy, the E 0 term has to be approximated. E 0[ρ0] consists
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of the DFT ’double counting’ contributions in the first line of equation (2.17) and only

depends on the reference density ρ0. Resulting in a term that is not dependent on the

specific chemical environment and therefore can be determined for a ’reference system’

and then applied to other molecules in different environments and thus resulting in

transferable parameters. Hence, E 0[ρ0] is approximated by a sum of pair potentials called

repulsive energy term [119]

E 0[ρ0] ≈ Er ep = 1

2

∑
ab

V r ep
ab , (2.25)

which can be determined by DFT calculations [143] or fitted to empirical data [148]. The

expression for the total energy then results as

E DF T B1 =∑
i

ni εi + 1

2

∑
ab

V r ep
ab (2.26)

Thus, Hµν and Sµν are computed once and stored and can be read in from tables. Further,

since DFTB1 is a non-self-consistent TB method the KS equations are solved only

once and resulting therefore in a speed-up of 5-10 compared to DFTB2 or DFTB3. Of

course limitations are that DFTB1 is only suitable for systems with small charge transfer

between the atoms. This is in particular the case for homo-nuclear systems or systems

with atoms of similar electro-negativity. Hydrocarbons are systems where DFTB1 is also

very well suited. For systems exhibiting a delicate charge balance, higher order terms

have to be considered [144].

2.3.4.2 DFTB2 and DFTB3

The extensions DFTB2 and DFTB3 approximate the E 2 and E 3 terms in equation (2.17)

respectively. The first assumption is, that the density fluctuations can be written as a

superposition of atomic contributions

δρ =∑
a
δρa (2.27)

and for the atomic-like density fluctuations a multi-pole expansion is used where only

the monopole terms are kept

δρa =∆qaF a
00Y00 (2.28)

Practically, the second-order integral (third line in equation (2.17)) is taken to be an

exponentially decaying charge density

δρa ≈∆qa
τ3

a

8π
e−τa |r−Ra | (2.29)
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and the Hartree integral is analytically evaluated. Resulting in an analytical function

γab , and the second-order term finally reads (for a 6= b)

E 2(τa ,τb ,Rab = 1

2

∑
ab
∆qa∆qbγab(τa ,τb ,Rab) (2.30)

= 1

2

∑
ab
δqaδqb

∫ ∫ ′ ( 1

|r − r ′| +
δ2E XC [ρ]

δρ(r )δρ(r ′)

∣∣∣∣
ρ0

)
F a

00F b
00Y 2

00dr dr ′ (2.31)

The Hartree term therefore describes the interaction of the charge density fluctuation

δρa and δρb . For large distances, Rab = |r −r ′|→∞ the XC terms vanish and the integral

describes the coulomb-interaction of two spherical normalized charge densities, which is

basically 1
Rab

and hence E 2 ≈ 1
2

∑
ab

δqaδqb

Rab
. On the other hand, for vanishing inter-atomic

distance Rab = |r −r ′|→ 0, the integral describes the electron-electron interaction on atom

a E 2 ≈ 1
2
δ2Ea

δ2qa
=Ua where Ua is know as the Hubbard parameter or the chemical hardness.

It describes how much the energy changes upon adding or removing electrons. From the

functional form of γab , one finds that the Slater exponent of an atom a is related to the

Hubbard parameter as

τa = 16

5
Ua , (2.32)

stating that the width of the atomic charge density is inversely proportional to its

chemical hardness. This relation is intuitive in that more diffuse atoms have a smaller

chemical hardness. Since γab encodes a constant proportionality, some problems arise

because this relations seems not to be valid across the periodic table. The deviation is

most pronounced between hydrogen and the first-row elements. To correct for this, a

modified γh
ab has been proposed [144, 85, 146] and a further explanation will follow in

chapter 3.7.1.

For E 3, the same approximation are introduced as for E 2. The third-order terms describe

the change of the chemical hardness of an atom with its charge state [10] and hence a new

parameter is introduced, the chemical hardness derivative U d
a . Initially, only the diagonal

terms were included in the third order terms [144, 85, 146] . The U d
a parameters can be

computed from DFT or fitted. As a result Γab emerges as the derivative of the γ-function

with respect to charge by introducing the Hubbard derivative parameter. Hence, the

third-order terms can be viewed as charge dependence capturing some problems of the

second-order formalism.

With all these approximations, the SCC-DFTB total energy with the third-order expansion

is given by

E DF T B3 = ∑
i ab

∑
µ∈a

∑
ν∈b

ni ccνi H 0
µν+

1

2

∑
ab
∆qa∆qbγ

h
ab +

1

3

∑
ab
∆q2

a∆qbΓab +
1

2

∑
ab

V r ep
ab (2.33)
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The derivative of the expression with respect to the molecular orbital coefficients leads

to the corresponding KS equations∑
ν

cνi (Hµν−εi Sµν) = 0 with ν ∈ b and ∀a,µ ∈ a (2.34)

and

Hµν = H 0
µν+Sµν

∑
c
∆qc

(
1

2
(γh

ac +γh
bc )+ 1

3
(∆qaΓac +∆qbΓbc )+ ∆qc

6
(Γca +Γcb)

)
(2.35)

where Sµν is the overlap matrix. The Hamilton matrix elements depend on the Mulliken

charges qa(∆qa = qa −Za) which in turn depend on the molecular orbital coefficients cµi ,

and hence these equations have to be solved self-consistently.

Closing, it has to be noted that the E 3 term consists of diagonal and off-diagonal

parts. Originally, only the diagonal terms have been included and to date the current

implementation of CP2K [149] also considers only the diagonal contributions to the third-

order terms. Hence, in principle the term DFTB3-diag should be employed but throughout

this manuscript the shorter form DFTB3 is used consequently and interchangeably.
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3 Applications

In this chapter the implementation details of the multi-objective optimization algorithm

are given as well as the mechanisms of how the multi-dimensional handling of the Pareto

set and the selection (decision making) thereof was carried out. Additionally, the entire

multi-objective set-up is summarized and the use of the selected objective functions

shortly discussed. The importance of the reference data is highlighted and the road

towards our final data selection elaborated. Finally, the results for the PM6opti m and

DFTB3opti m simulations of liquid water at ambient conditions are compared with the

standard parameters, classical force field approaches and ab-inito calculations.

For the oxygen radial distribution function at ambient bulk water condition substantial

improvements for both semi-empirical methods could be achieved. Enhancement can

also be reported for the final ambient densities for water calculated with PM6opti m and

DFTB3opti m . The obtained densities for the optimized semi-empirical methods are even

comparable to ab-inito calculations with dispersion correction (BLYP-D3) and therefore

render a more realistic picture of modelled water with the newly employed parameter set.

Analysis of the slab simulation, the performance of the semi-empirical methods appear to

be comparable to the classical force-fields when it comes to surface tension. With regard

to the self-diffusion coefficient values for both semi-empirical methodss, it could be found

that they are in better agreement than ab initio values and force field methods.

Thus, the finding demonstrates the importance of the optimization procedure and the

potential of many models or methods that could be exploited with a systematic re-

parametrization. An other important issue that should be emphasized is that before

correcting methods for deficiencies (like PM6-DH [150] corrects for dispersion and hy-

drogen bonding errors), it should be made sure that the short comings are not based on

improper parameter sets. Thus, our main contribution in this chapter is to show that

the NDDO model (i.e PM6) is indeed capable of reproducing many difficult properties,

which are encountered employing water simulations.
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3.1 Introduction

All sorts of theoretical and technical problems arise in the area of parameter optimization

and hence it constitutes an independent field within applied mathematics. Employing

the theoretical framework to real (physical) problem imposes an extra layer of difficulty

to the already complicated process. Parameter fitting is a key process in computational

chemistry even for ab-initio methods since the quantum-mechanical systems can not

be solved analytically. However, there are three interrelated problems associated with

parameter optimization in this field which are all incomplete:

1. computational power

2. historical

3. systematic

In the beginning of computational chemistry and with the development of computer

technology starting 1940 the computational power was limited. Thus, for parametrization

purposes only limited sets of reference data or limited sets of parameter itself could be

optimized and as a result thereof, incomplete optimization results were obtained (only

certain parameter were optimized where others were kept fixed). Despite of this caveat,

results were promising, with few known defects arising from the methodology. The success

of the obtained parameter sets gave rise to a resulting problem. The obtained parameter

were kept constant over time (historical legacy) even when fundamental changes to

methods were proposed. Certainly, one should re-optimize the parameter set every time

changes to the model are adopted. A prominent example was the development of PM3

parameter sets where first initial elements were fitted and then kept fixed for the addition

of new elements.

Finally, there is no consensus about how to carry out parameter optimization in com-

putational chemistry. For the development of semi-empirical methods usually reference

enthalpies, geometries, ionization potentials, dipoles amongst others are used. Thus, all

parametrizations employ different scalarization and selections and thus lack a systematic

approach. This raises challenges to reproducibility of optimized parameter sets and hence

a much cleaner and simpler approach such as ’real’ multi-objective optimization should

be carried out. Therefore, the main goal of this manuscript is to advocate a more integral

view on parameter optimization in computational chemistry.

3.2 Mechanisms

Here we review both, the implementation of the multi-objective optimization algorithm as

well as the mechanisms of how to deal with a Pareto set in a multi-objective environment.

Thus, shortly some visualizations and selection options are presented and then applied to
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the parameter optimization problem of the two semi-empirical methods described earlier

on.

3.2.1 Implementation

In chapter 1 we outlined the schema of multi-objective optimization with the use of

covariance matrix adaptation. The entire implementation in CP2K [149] is based on

a simple master-worker design (Figure 3.1) accomplished with the standardized and

portable message-passing system (MPI) available for Fortran and perfectly suited for

high performance computing. The entire code is available as a fork of the official CP2K

package on github [151]. Some minor changes to the official code were made such as

energy convergence flags since those are crucial to ensure an unobstructed optimization

process. But mostly the multi-objective code is autonomous and therefore little changes

to the original CP2K program is necessary since its mostly based on the particle swarm

framework developed by Ole Schütt [149].

Master

1 2 3 ... N

Figure 3.1 – Master and worker scheme as implemented in CP2K to carry out the
multi-objective optimization.

Theoretically, for each individual in the population which is represented as a 3-tuple

(xk , sk , f m(xk )), one needs to perform m function evaluations depending on the number

of objectives m quantified. Usually in practice though, only one quantum chemistry

calculation has to be performed to achieve all the desired outcomes and hence all the

m objectives at once. Carrying out a geometry optimization results in properties such

as the geometry, energy and atomic charges which typically are compared to reference

values and taken as objectives. This leaves us with one calculation per individual and

hence based on a direct mapping of individual and worker distributes the task over all

dynamically available worker. The number of workers can be chosen resource depended

and theoretically set up to the hardware limit of the computing resource. This flexible

scheme allows a perfect scaling for high performance computation since by increasing the

size of the population in an multi-objective optimization run one can simply increase the

number of workers to match the desired time per iteration. This is illustrated in table 3.1,

where the necessary tasks per multi-objective optimization iteration are given. In that

given example n geometry optimizations (based on the reference data) have to be carried
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out for k individuals. Therefore, the master node distributes this table (the parameter

set xk respectively) to the available worker and receives in return the objectives f m(xk ).

It is very difficult to employ a perfect use of the available computing resources since the

individual structure 1 structure 2 structure · · · structure n

1 f m(x1) f m(x1) f m(x1) f m(x1)
2 f m(x2) f m(x2) f m(x2) f m(x2)
· · · f m(x···) f m(x···) f m(x···) f m(x···)
k f m(xk ) f m(xk ) f m(xk ) f m(xk )

Table 3.1 – Internal data structure of the tasks to distribute amongst workers. For
every structure 1 to n in the reference set properties have to be calculated f m for all xk

parameter sets (n ×k matrix)

structures may differ subsequently and hence the required computational time for geome-

try optimization runs vary enormous between different structures. This heterogeneous

setup subsequently leads to idle time for some workers that only could be resolved by

grouping workers to flexible work groups to achieve a balanced work load and hence a

more efficient usage of the computing resources. But predicting necessary computational

resource for a given structure and parameter set is almost impossible and hence the

simpler one process per worker ratio (i.e one MPI process per geometry optimization)

was maintained.

However, some features were implemented to speed up and avoid unnecessary computa-

tions. On one hand, if for one parameter set xk the initial energy of a structure can not

be converged then all the other structures are skipped and no calculations are carried

out for that set. On the other hand, if during the calculations of the geometry minimum

the structure does not achieve geometry convergence, flags are passed such that the

remaining structures are not processed. Thus, undesired parameter sets are intercepted

as early as possible to speed up the overall optimization iteration.

3.2.2 Visualization of n-dimensional Pareto front

As described in Chapter 1, obtaining the Pareto front is not the last step in the decision

making process. One or more candidate solutions have to be selected from the performance

space for further inspection. It is widely accepted that visualization tools are valuable

and provide decision-makers with a meaningful method to analyse the Pareto set and

select good solutions. For bi-objective problems it is usually straightforward to make an

graphical analysis of the Pareto set points possibilities, but this becomes more difficult

for higher dimensions. The most common are summarized in Table 3.2.
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Method Illustration

Scatter diagrams: The visualization consists of an
array of scatter diagrams arranged in the form of an
n ×n matrix. Each dimension of the original data de-
fines one row and column of the matrix. The complex-
ity of the representation increases notably with the
dimension but all pair-wise Pareto fronts are shown
simultaneously and correlations are easily detected.

Parallel coordinates: A multidimensional point is
plotted in a two-dimensional graph. Each dimension
of original data is translated to an x-coordinate in
the two-dimensional plot. This is a very compact
way of presenting multidimensional information, but
with large sets of data it loses clarity and the analysis
becomes difficult to perform

Dimensional reduction: Another approach would
be to apply a dimensional reduction Rn →R3 so that
the Pareto front can be displayed in usual manner
in R3 or from R3 reduced to a much simpler R2 plot
as shown. In our specific case dealing with a 4th
dimensional decision space the last two dimension
were merged with the feature scaling scalarization.
For that, the objectives f3, f4 were rescaled to be
within range [0,1]. The general formula is:

x ′ = x −mi n(x)

max(x)−mi n(x)

where x is an original function value in the given ob-
jective hence x ′ is the normalized value. Consequently,
after normalizing objectives f3 and f4 the resulting
fcons = f ′

3 + f ′
4 is constructed. Hence, a normal 3-

dimensional plot can be obtained with the caveat that
the constructed dimension is somewhat difficult to
interpret.

Table 3.2 – Visualization methods of n-dimensional Pareto front
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3.2.3 Selection from n-dimensional Pareto sets

Our strategy of selection process started with the visual inspection of the pairwise scatter

diagrams. The plots can already indicate what regions of the multi-dimensional space

should be investigated in more detail. Usually, certain ranges can be excluded to narrow

down the potential solutions of interest. After a pre-selection was carried out, we picked

k-solutions by the k-means clustering approach of the remaining Pareto set. Given a

set of observations (x1, x2, · · · , xn), where each observation is a d-dimensional real vector,

k-means clustering aims to partition the n observations into k(≤ n) sets S = S1,S2, · · · ,Sk

so as to minimize the within-cluster sum of squares (WCSS). In other words, its objective

is to find:

argmin
S

k∑
i=1

∑
x∈Si

‖x −µi‖2 (3.1)

where µi is the mean of points in Si . A simple illustration is given in Table 3.3 where

every step is listed to describe the algorithm. In the current implementation, the k-means

1. k initial
”means” (in this
case k = 3) are
randomly gen-
erated within
the data domain
(shown in color).

2. k clusters
are created by
associating every
observation with
the nearest mean.
The partitions
here represent the
Voronoi diagram
generated by the
means.

3. The centroid of
each of the k clus-
ters becomes the
new mean.

4. Steps 2 and 3
are repeated until
convergence has
been reached

Table 3.3 – Demonstration of the standard algorithm for the k-mean clustering in 4 steps

clustering is replaced by the k-medians clustering. It is a variation of the k-clustering

method where instead of calculating the mean for each cluster to determine its centroid,

one instead calculates the median. This has the effect of minimizing error over all clusters

with respect to the 1-norm distance metric, as opposed to the square of the 2-norm

distance metric [152].

This relates directly to the k-median problem which is the problem of finding k centres

such that the clusters formed by them are the most compact. Formally, given a set of

data points x, the k centres ci are to be chosen so as to minimize the sum of the distances
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from each x to the nearest ci . Since we want to obtain k representative of our Pareto set,

this is identical of finding the k centres as described above.

3.3 Multi-objective setup

The strategy parameter are chosen as default values, according to Table 1.1 from the

first chapter. It has to be noted that the entire optimization process is carried out in

scaled vector space. Thus, a hypercube scaling is employed for the parameters where the

resulting values are within [0 · · ·1]n . This transformation allows to initialize the covariance

matrix adaptation algorithm with basic initial parameters according to subsection 1.3.5.2.

However, upper and lower limits of the variable space have to be set for this transformation

and hence the PM6 parameters were allowed to be within a bound of ±10%. A small

value was chosen on purpose for the parameter band since this might guarantee a better

transferability to the old values and hence makes it easier to compare with standard

PM6 calculations. It is best to maintain the parameter set where possible since the

standard PM6 parameter value have proven to perform reasonable in a lot of applications

[153, 154, 155, 156, 157] but not for bulk water [158]. As for the DFTB3 optimization

the boundaries were set to boundlow = [0.5, 0.0, 2.5] and boundupper = [3.5, 1.0, 5.0]

from visual inspection of the γ-function and the proposed correction respectively. Initial

values for the PM6 are straight forward since there are standard values available [33]. For

the DFTB3 initial values were set to a = 1.0, b = 0.5, c = 3.0 again from analytical formal

inspection. The initial step size σ was set small (0.01) such that an initial local exploration

is enforced. The population size was chosen to be 800 for the PM6 optimization since

the decision space is huge (R27) and hence a large population is needed. Although for

the DFTB3 the decision space is much smaller, the same population size was kept for

practical reasons. A short summary of the most important values is given in Table 3.4.

3.4 Objective Functions

The parametrization of the original MNDO method focused on ground-state properties,

mainly heats of formation, geometries, ionization potentials and dipole moments. AM1

and PM3 followed the same philosophy but were more extensive in respect to reference

data sets. Enthalpy f1 and geometry f2 are basic requirements and therefore have to be

included as objectives. The ionization potentials were neglected since we are carrying

out a re-optimization and keeping the parameters in boundaries and hence should in

principle grantee that the ionization potential is not affected largely. The water monomer

dipole is not chosen as objective function since it is a compound property of its geometry

f3 and partial atomic charges f4. Hence, we decided to include an error on atomic charge

for oxygen f4 as last objective. The geometric error was calculated according to the

root-mean-square-deviation explained below and is a new entity since usually the bond

lengths error or angle deviation are used as measure for geometric accuracy. The relative

67



Chapter 3. Applications

Description Parameter Value

Step size damping d 1+ n
2

Target success probability p t ar g et
succ

1

5+
√

1
2

Success rate averaging parameter cp
p t ar g et

succ

2+p t ar g et
succ

Covariance matrix adaptation cc
2

n+2

Covariance learning rate ccov
2

n2+6

Boundaries bound
upper
lower ±10% of starting value for PM6

Covariance matrix C Identity matrix I

Step size σ 0.01

Population size λ 800

Table 3.4 – Multi-objective set-up values for the most important parameters and short
description thereof.

enthalpy error for all compounds in the reference set was obtained as described in the

subsection 3.4.2 and follow a more traditional approach. The error from the Mulliken

charges are employed according to subsection 3.4.3 and a more detailed description on

the selection of reference data is given in 3.5 further on.

In principle one could also employ performance related objectives such as minimize

SCF cycles or faster convergence of geometry optimization. This would open up new

fields in basis set optimization techniques for ab intio parametrization and one could

re-optimize for accuracy and speed before carrying out time consuming geometry or

molecular dynamics simulations.

3.4.1 Root-Mean-Square-Deviation of atomic positions (RMSD)

The root-mean-square deviation (RMSD) is the measure of the average distance between

the atoms of the superposition of the reference geometry and the optimized structure.

Coutsias, et al. [159] presented a simple derivation, based on quaternions, for the optimal

solid body transformation (rotation-translation) that minimizes the RMSD between two

sets of vectors [159].

RMSD =
√√√√ 1

N

N∑
i=1

δ2
i (3.2)
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where δ is the distance between N pairs of equivalent atoms. Usually a rigid superposition

which minimized the RMSD is performed, and this minimum is returned. Given two sets

of n points v and w , the RMSD is defined as follows:

RMSD =
√√√√ 1

N

N∑
i=1

‖vi −wi‖2 =
√√√√ 1

N

2∑
i=1

(
(vi x −wi x )2 + (vi y −wi y )2 + (vi z −wi z )2

)
(3.3)

Commonly the RMSD is expressed in length units usually in Angstroms [Å] for our

purpose.

The main idea behind using the RMSD is the fact that the reference geometries are in

equilibrium. A structure is in equilibrium when all forces or moments acting upon it

are balanced. This means that each and every force acting upon a body, or part of the

body, is resisted by either another equal and opposite force or set of forces whose net

result is zero. Thus, the net force acting on each atom of an equilibrium structure must

therefore be negligible. Consequently, instead of using a force matching approach where

the initial forces of a geometry optimization run should vanish, we decided to include the

”dynamical” relaxation and hence compare the reference geometry with the optimized

structure. It is clear that a small error in RMSD correlates with a small error in the

forces in the geometry optimization process. Therefore using the RMSD is a far more

integrated approach. The limiting factor of using the RMSD as measure is that the

reference structures need to be in equilibrium state otherwise eventually something like

force matching approaches must be applied.

3.4.2 Enthalpy Error

The relative error was calculated to quantify the offset in enthalpy. The heat of formation

∆H f is a measure for relative stability and calculated in gas phase usually at 298 K. There

would be no point in employing absolute energies for parametrization since they can not

directly be compared. On the other hand heat of formations can directly be investigated

since they are relative to the compound basis energy. To account for the different system

sizes and enthalpies in the reference data, the absolute error |∆H k
r e f −∆H k | is divided by

the reference enthalpy ∆H k
r e f resulting in a relative deviation per structure. Consequently,

all the contributions of the errors in enthalpy are summed to the final value of εenthal py .

We can express the energy error as

εenthal py =
N∑

k=1

|∆H k
r e f −∆H k |
∆H k

r e f

=
N∑

k=1

∆∆H k

∆H k
r e f

(3.4)

where the sum is taken over all N structures in the reference set. Through the manuscript

the error in enthalpy is usually given in kcal/mol when not further stated. Thus one

should keep in mind that the reported values are always relative enthalpy errors.
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3.4.3 Charge Error

The calculation of effective atomic charges plays an important role in the application

of quantum mechanical calculations to molecular systems [7, 9, 160]. This is despite all

conceptual problems connected to dividing up the overall molecular charge density in

atomic contributions, and all practical problems connected to finding a convenient and

robust algorithm applicable to a wide range of systems [161]. Partial atomic charges play

a crucial role in reactivity and account for the resulting dipole of a molecule. Although

the Mulliken population analysis [7, 9] has some deficiencies, it is a well established and

widely used method to divide the charge density. Hence, atomic partial charges are

calculated and compared with the reference atomic charge. The ground-state structure

of the water molecule has been studied repeatedly [162, 163] and we will use here the

structure suggested by Benedict and co-workers [162] with rOH = 95.72 and aHOH = 104.52.

The gas phase molecular dipole moment of water has been measured to 1.855D [164].

Assuming the structure of water to be rigid at its experimental geometry, this corresponds

to effective atomic charges of q(O) =−0.66e and q(H) =+0.33e. Therefore, the charge

error is defined as the difference in oxygen atomic Mulliken charges to the reference

charge

εchar g e = q(O)r e f −q(O)calc =∆q(O) (3.5)

Since the dipole is an entity consequently resulting from geometry and charge already

described earlier, it makes more sense to use those attribute because one could obtain a

correct dipole with wrong geometry and charges.

3.5 Reference Data

The selected reference data should be representative of the target system and also be

within the theoretical scope of the underlying model. Hence the reference data should

be able to be reproduced within the frame-set available. For instance, the water27

(description in 3.5.1) would not be a reference database [165] eligible for classical force

field methods because it contains protonated water clusters which can not be described

with the typical force field approaches.

Since the goal was to re-parametrize for bulk water simulation, some available compilations

of water clusters were considered. It should be mentioned that the selection of the

reference data is a very delicate undertaking. In principle, different reference data

should be systematically tested together with the complete optimization routine and

the underlying method. Thus, for small reference sets multi-objective optimization

might provide some insights. For example multi-objective optimization could be used to

investigate the geometries for different water cluster sizes starting from the monomer

n = 1 where the parameters of the model (i.e PM6 parameters) are only optimized with

respect to the monomer geometry as objective ( f1). Then, systematically n (cluster size)
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is increased and more objectives fn are added. But as elaborated in the first chapter,

adding more objectives render the entire optimization process unpractical and hence we

decided to consider well established sets from the literature as described in the following

sections:

3.5.1 Water27

Water27 reference data [165] is a compilation that consists of 27 cluster binding energies

extrapolated to the CBS limit of the MP2 and CCSD(T) theory. This includes a

set of 14 neutral water cluster, 5 hydronium ion clusters, 7 hydroxide ion clusters,

and 1 auto-ionized water cluster. The structures are shown in Figure 3.2, and the

Cartesian coordinates are obtained after optimization at the B3LYP/6-311+G(2d,2p)

level. Although the compiled set of Bryantsev et al [165] seems like a valid choice it

leaves open the room for speculation. It is not clear which clusters are necessary and

show resemblance to bulk environment of water. Presumably, the inclusion of charged

clusters is not necessary for a valid liquid bulk water description and hence a smaller set

should be used for practical reasons. For every optimization process it is always desirable

to keep the reference system as small as possible since the arising calculations increase

with the size of the reference set.

3.5.2 BEGDB water clusters

BEGDB (Benchmark Energy and Geometry DataBase) selection is a set of global and

local minima of water cluster containing 2-10 waters [166]. The geometry (Figure 3.3) of

each isomer was optimized on a RI-MP2/aug-cc-pVDZ basis. The binding energies were

calculated by extrapolating to the complete basis set limit. It can be argued that the

compilation by Temelso and Shields [166] contains more realistic features of bulk water

systems than the water27 database and therefore should be preferred as reference system.

However, the reference system should not be redundant to wit the same feature should

only occur proportional to the target system. In that respect, the BEGDB water cluster

set seems not to be ideal but since it is not clear which features represent the liquid bulk

water system the best no systematic reduction can be made.

3.5.3 QCE clusters

QCE (Quantum Cluster Equilibration) research employs the question ”what can clusters

tell us about the bulk?”. The quantum cluster equilibrium was first published in 1998 by

Frank Weinhold [12]. A concise definition of the QCE method comprises the essential

idea of applying statistical mechanics to quantum chemically calculated clusters in order

to gain insight into liquid and vapour phase. One helpful result of these calculations is the

population composition of the different clusters considered for each phase point. Several
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Figure 3.2 – Structures from Bryantsev [165] pure, protonated, and deprotonated water
complexes further refered as water27 set.
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Figure 3.3 – RI-MP2/CBS low energy isomers of (H2O)n=2−10 sorted in order of increasing
size and electronic energy and referred to as BEGDF water set [166]
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results were obtained with the QCE models for water population analysis [13, 167, 168].

As example Figure 3.4 taken from Ralf Ludwig [168] is shown where the population

Figure 3.4 – Population analysis by Ludwig et al [168]. The population of certain clusters
are shown for different phases. In this analysis the predominant cluster for liquid appeared
to be w8 [168].

of different water clusters (in %) is shown for different temperature regimes and hence

phases. A more recent study by Lehmann et al [13] advocates that (H2O)9 (s9) is

Figure 3.5 – Populations at the liquid-phase temperature range for different sets [13]

predominant for the ambient conditions in the bulk as shown in Figure 3.5. In a more

extensive analysis of different reference sets the final selection consisted of w1, w2, w3B,

w5, w6, w8CUBE, s9, s11 as they are predominant for the liquid bulk water phase and

hence the ideal candidate as reference system. As shortly described in [13], structures

and energies were obtained employing MP2 (TZVPP) theory together with resolution of
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identity (RI) approximation [169]. The resulting reference values for the enthalpy are

presented in Table 3.5.

Figure 3.6 – The final selection of clusters of Lehmann et al [13] . The set includes
strctures w1, w2, w3B, w5, w6, w8cube, s9, s11 with detailed selection process described
in [13].

Structure Reference
Enthalpy [kcal/mol]

w1 -
w2 4.58891
w3B 14.006
w5 33.6759
w6 41.826
w8cube 67.1367
s9 67.3279
s11 81.9312

Table 3.5 – The reference enthalpy values in [kcal/mol] are shown for the final set [13].

3.6 Reparametrizing PM6

The main goal of the re-parametrizing process is twofold. On one hand, the multi-objective

optimization scheme should be tested and hence a systematic approach established. As

target we chose bulk water simulations since this system is not easy to reproduce [170]

and only two elements (H and O) would be needed to be re-parametrized. Hence, on the

second hand the question if the underlying theory of the PM6 method allows realistic

description of bulk water should be answered.

In the course of the optimization process, an additional very important question is

addressed, namely how the reference data should be chosen. In our particular case we

sought to understand whether bulk water properties can be reproduced from water cluster

reference data.
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3.6.1 Parameters

As we have seen in chapter 2, all semi-empirical methods contain sets of parameters.

Usually they only consider the valence s- and p-functions, which are taken as Slater

type orbitals with corresponding exponents and different integrals according to the

level of theory. A short description of the parameters for PM6 are given here. For the

re-optimization of the default PM6 parameters there are 7 parameters for the hydrogen

atom and 14 parameters for the Oxygen atom as well as an additional 6 parameters from

the diatomic contributions. In total, hence we face a 27-dimensional search space of our

optimization problem R27. In table 3.6 all occurring parameters in the PM6 method are

listed. The one-center one-electron integrals have a value corresponding to the energy of

pm6 parameters for H and O

One-center two electron repulsion integrals (eV) Gss ,Gsp ,Gpp ,Gp2, Hsp ,
One-center one-electron integrals (eV) Uss ,Upp

Resonance (eV) βs ,βp

Slater exponent (a.u.) ζs ,ζp

Core exponent (Å−1) a,b,c
Diatomic (Å−1) aH H , xH H , aOO , xOO , aOH , xOH

Table 3.6 – A conceptual breakdown of the parameters in PM6 where the first three lines
show the integrals followed by the Slater exponent and core-core repulsion parameters.

a single electron experiencing the nuclear charge (Uss ,Upp) plus terms from the potential

due to all the other nuclei in the system. The two-centre one-electron integrals are written

as a product of the corresponding overlap integral multiplied by the average of two atomic

”resonance” parameters, β. There are only five types of one-center two-electron integrals

surviving the NDDO approximation within a sp-basis Gss ,Gsp , Hsp ,Gpp ,Gp2. The G-type

parameters are Coulomb terms, while the H parameter is an exchange integral. The Gp2

integral involves two different types of p-functions (px , py , pz). The orbital exponents

are represented as Slater type and given as ζs ,ζp . The core-core repulsion terms are

given through the parameters a,b,c and due the inherent approximation in the NDDO

method and the defect thereof in PM6 additional diatomic parameters were introduced

(aH H , xH H , aOO , xOO , aOH , xOH ).

The default set of PM6 parameters for hydrogen is given in table 3.7 and the according

set for the oxygen parameters of the PM6 methods in table 3.8. The diatomic repulsion

parameters are listed in table 3.9 with the fitted default values.
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PM6 parameters for H

Uss -11.247
βs -8.3530
ζs 1.2686
gss 14.449
a 0.024184
b 3.0560
c 1.7860

Table 3.7 – Standard PM6
values for hydrogen [33].

PM6 parameters for O

Uss -91.679
Upp -70.261
βs -65.653
βp -21.623
ζs 5.4218
ζp 2.2710
gss 11.304
gsp 15.807
gpp 13.618
gp2 10.333
hsp 5.0108
a -0.017771
b 3.058310
c 1.8964

Table 3.8 – Original param-
eters for PM6 oxygen

diatomic parameters for OH

aH H 3.5409
xX X 2.2436
aOO 2.6240
xOO 0.53511
aOH 1.2609
xOH 0.19230

Table 3.9 – diatomic pa-
rameters for hydrogen and
oxygen as originally fitted
[154].

3.6.2 Results

Figure 3.7 – Reduced objective space where water geometry error f3 and charge error f4

are mapped to one dimension. In red are represented the parameters that belong to the
Pareto set. The blue surface is the interpolated Pareto front and the evaluated vectors
are shown as black dots.

For an initial visual inspection of the results of the optimization run, we plot the reduced
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objective space in R3. Therefore the water monomer geometry error ( f3) and charge

error ( f4) are mapped as described earlier. The resulting plot is shown in Figure 3.7

where the blue surface represents the Pareto front and the small dots the individuals or

solution vector xk with resulting objectives. Coloured in red are the solutions belonging

to the Pareto set and illustrated in Figure 3.7. Thus, it is difficult to draw any conclusion

from the output and constitute a further selection. Hence, the scatter-plot matrix is

used to narrow down the selection of the solution space. As a first perceptive we shall

focus on the scatter diagram of total RMSD and enthalpy error as shown in Figure 3.8

where the green dots represent the members of the Pareto set and in red a interpolation

is drawn for the 2-dimensional Pareto front of the two objectives. This plot suggests

Figure 3.8 – The total RMSD error [Å] is plotted versus the total relative enthalpy error
[kcal/mol]. The green dots represent the projected Pareto set and the red line is the
approximated 2D Pareto front.

that a selection for the RMSD and enthalpy error can be made. Thus, the solution we

likely to be interested in are in the area below RMSD < 2 and enthalpy error < 0.3.

This is because only marginal improvements in either objective can be made outside this

region. For decision making purposes we have used both, the total RMSD and the total

enthalpy error which must be in mentioned boundary. The ability to set these additional

determinations is one of the advantages of the multi-objective optimization process as one

can not know in advance how the objectives will appear in the optimization process itself.

Thus, by applying proposed selection to the output data we again plot the scatter matrix

as shown in Figure 3.9a where all evaluated data sets are plotted, including the Pareto

set. This time selecting the relation of total RMSD and water monomer geometry for

further analysis. In plot ?? the objective RMSD is plotted against the error in geometry

of the water monomer where the black dots are all solutions from the optimization output,

green dots represent the Pareto set and the red line the fitted 2-dimensional Pareto front

for the objectives f2, f3. The eventual option would be to cut all water geometries that

exceed an error of 0.02 [Å]. Thus, the final selection boundaries for the PM6 parameter
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(a) Scatter-plot matrix for all objectives (b) Charge error versus water monomer geometry

Figure 3.9 – Solution vectors xkafter initial selection

sets for the 4 objectives are:

• f1 ene err < 0.3 kcal/mol

• f2 RMSD < 2 Å

• f3 water geo < 0.01 Å

• f4 charge < 0.02 e

As described earlier, from the resulting set we performed a k-median clustering and

decided to employ k = 4 such that a small, representative sample set is obtained from the

large Pareto front.

Table 3.10 summarizes the resulting candidates, where all the 27 parameters of the

PM6 method are shown as well as the 4 objectives, respectively the total enthalpy

error (ene err) [kcal/mol], total geometry error (RMSD) [Å], monomer geometry error

(water geo) [Å] and charge error (charge) [e] for the QCE reference data set alongside

with the detailed enthalpy errors and geometry errors for the 8 structures in the set.

For the 4 sets obtained from the k-median clustering, a short bulk water simulation in

the canonical ensemble was performed. After a short equilibration phase ≈ 10 [ps], the

oxygen-oxygen radial distribution function (rdf) was calculated and compared with the

experimental data. From visual inspection of the oxygen-oxygen rdf the final selection

of the parameter set was carried out. Thus, the resulting parameter set for the PM6

method are presented in Table 3.11 along with the original values and the change in

percentage. It is interesting to see that large deviation is encountered for the Slater atomic

orbital exponent both, for oxygen Z o
s ,Z o

p and hydrogen Z h
s . Since hydrogen-hydrogen
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1 2 3 4

Uh ss -11.1488 -11.1647 -11.1949 -11.1543
betah s -8.1790 -8.1866 -8.1886 -8.1828

Zh s 1.3278 1.3283 1.3286 1.3265
gh ss 14.0171 14.0273 14.0369 14.0097

ah 0.0244 0.0238 0.0239 0.0238
bh 3.2790 3.2554 3.2541 3.2913
ch 1.7685 1.7916 1.8014 1.8014

Uo ss -92.6815 -94.0108 -93.3139 -93.9762
Uo pp -73.3399 -73.9947 -73.6156 -73.6218
betao s -65.6594 -66.0067 -65.9796 -66.1172
betao p -23.4438 -23.4025 -23.3615 -23.2638

Zo s 4.9249 4.9095 4.9333 4.9036
Zo p 2.0439 2.0442 2.0439 2.0447
go ss 11.6973 11.8355 11.7903 11.8728
go sp 14.7819 14.8956 14.9184 14.8799
go pp 12.7095 12.6064 12.6603 12.6188
go p2 11.1047 11.1840 11.1015 11.1239
ho sp 5.4317 5.4100 5.4373 5.3895

ao -0.0180 -0.0178 -0.0177 -0.0178
bo 3.2590 3.2779 3.2682 3.2697
co 1.7101 1.7134 1.7239 1.7086

x hh 2.0551 2.0623 2.0561 2.0573
x oh 0.2016 0.2004 0.1998 0.2000
x oo 0.5163 0.5198 0.5199 0.5202
a hh 3.5152 3.4757 3.4704 3.4821
a oh 1.2678 1.2479 1.2575 1.2631
a oo 2.4494 2.4757 2.4861 2.4984

ene err 0.2577 0.2061 0.2727 0.2361
rmsd 1.9091 1.9881 1.8778 1.9728

water geo 0.0063 0.0084 0.0098 0.0082
charge 0.0078 0.0189 0.0120 0.0135

ene 0 0.0000 0.0000 0.0000 0.0000
ene 1 0.0373 0.0442 0.0257 0.0341
ene 2 0.1212 0.1107 0.1287 0.1234
ene 3 0.0236 0.0122 0.0257 0.0176
ene 4 0.0217 0.0105 0.0231 0.0163
ene 5 0.0165 0.0099 0.0234 0.0148
ene 6 0.0162 0.0069 0.0198 0.0115
ene 7 0.0213 0.0117 0.0263 0.0185

rmsd 0 0.0063 0.0084 0.0098 0.0082
rmsd 1 0.1022 0.1010 0.1039 0.1033
rmsd 2 0.2558 0.2496 0.2486 0.2573
rmsd 3 0.3193 0.4525 0.4464 0.4544
rmsd 4 0.1706 0.1663 0.2218 0.1653
rmsd 5 0.2355 0.2285 0.2336 0.2346
rmsd 6 0.2625 0.2477 0.2465 0.2568
rmsd 7 0.5569 0.5343 0.3673 0.4930

Table 3.10 – The resulting candidates of the k-median clustering. After a short NVT
simulation and evaluation of the radial distribution function, the last candidate was
selected.
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original final change in %

Uh ss -11.2470 -11.1543 -0.8242
betah s -8.3530 -8.1828 -2.0376

Zh s 1.2686 1.3265 4.5646
gh ss 14.4487 14.0097 -3.0381

ah 0.0242 0.0238 -1.4701
bh 3.0560 3.2913 7.7018
ch 1.7860 1.8014 0.8643

Uo ss -91.6788 -93.9762 2.5059
Uo pp -70.4609 -73.6218 4.4859
betao s -65.6351 -66.1172 0.7344
betao p -21.6226 -23.2638 7.5902

Zo s 5.4218 4.9036 -9.5570
Zo p 2.2710 2.0447 -9.9631
go ss 11.3040 11.8728 5.0316
go sp 15.8074 14.8799 -5.8679
go pp 13.6182 12.6188 -7.3386
go p2 10.3328 11.1239 7.6565
ho sp 5.0108 5.3895 7.5571

ao -0.0178 -0.0178 0.0432
bo 3.0583 3.2697 6.9112
co 1.8964 1.7086 -9.9035

x hh 2.2436 2.0573 -8.3015
x oh 0.1923 0.2000 3.9962
x oo 0.5351 0.5202 -2.7794
a hh 3.5409 3.4821 -1.6609
a oh 1.2609 1.2631 0.1744
a oo 2.6240 2.4984 -4.7877

ene err 0.9130 0.2361 -74.1426
rmsd 5.8544 1.9728 -66.3017

water geo 0.0313 0.0082 -73.9577
charge 0.0416 0.0135 -67.4659

ene 0 0.0000 0.0000
ene 1 0.1511 0.0341 -77.4133
ene 2 0.1418 0.1234 -13.0077
ene 3 0.1220 0.0176 -85.6036
ene 4 0.1194 0.0163 -86.3422
ene 5 0.1359 0.0148 -89.0810
ene 6 0.1242 0.0115 -90.7807
ene 7 0.1188 0.0185 -84.4557

rmsd 0 0.0313 0.0082 -73.9577
rmsd 1 0.0747 0.1033 38.3160
rmsd 2 0.6150 0.2573 -58.1647
rmsd 3 1.0500 0.4544 -56.7247
rmsd 4 1.1868 0.1653 -86.0721
rmsd 5 0.4057 0.2346 -42.1709
rmsd 6 1.1461 0.2568 -77.5900
rmsd 7 1.3449 0.4930 -63.3447

Table 3.11 – Comparison of the final parameters with the original PM6 values and the
change in percentage
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core-core repulsion is not frequently encountered in liquid water, the large change in

xhh is likely to be trying to correct the oxygen-hydrogen interaction although aoo is

also reduced. For the mono-atomic parameters a,b,c it can be assumed that especially

through the change in the oxygen parameter, a narrower basin of attraction with a bigger

radius is employed. However, it is difficult to asses individual parameters specifications

and a rigorous sensitivity analysis of the PM6 parameters should be performed to fully

understand and asses the underlying connections.

Figure 3.10 – Resulting parameter vectors xk with according objectives after the selection.
The water geometry was combined with the charge error to render a 3D plot for visual
inspection. Red dots represent the Pareto set and the blue surface the interpolated Pareto
front whereas the black dots are evaluated parameters. In green the selected parameters
from the k-median clustering are shown.
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3.7 Parametrizing DFTB3 γ-function

3.7.1 γ-function and Parameters

As described in section 2, γab is derived from the assumption that the electron-electron

interaction in the second-order terms of the total DFTB3 energy can be evaluated from

the interaction of two exponentially decaying charge densities, in which the exponent

τa is a measure for the extension of the atomic charge density. Further, the on-site

interaction γaa corresponds to the electron self-interaction on the atom and hence can be

expressed via the Hubbard parameters Ua , which are twice the chemical hardness νa :

γaa =Ua = 2νa (3.6)

This leads to the assumption that there is an inverse correspondence between the size of

an atom, 1/τa , and its chemical hardness parameter, Ua [146, 120]. In a recent work of

Politzer and co-workers [171], various sets of covalent radii were compared with respective

chemical hardness value and an reasonable agreement has been found. However, large

deviation has been found in particular for the hydrogen atom.

Because γab approaches the value γaa =Ua at short distances, the poor relation between

its size and the chemical hardness for H means that modifications have to be made for

γab for all X-H pairs. In principle, this could be done by modifying the value of UH for

hydrogen according to its atomic size, which would, however, make the on-site interaction

on H, γH H , inconsistent with its chemical hardness.

In the standard implementation of the DFTB3 method, γab has the form

γab = 1

Rab
−S (3.7)

with S being a short-range function that leads to the desired limit for small inter-atomic

distances. Since the hydrogen atom size according to rc = 6/(16UH ) is too large, the

density overlap is overestimated and therefore the electronic interaction starts to deviate

from 1/Rab too early. To correct for this, Yang et al [120] proposed an additional damping

term for the X-H pairs as

γaH = 1

RaH
−S exp

[
−

(
Ua +UH

2

)ζ
R2

aH

]
(3.8)

Where the single parameter ζ in the exponent is fitted to appropriate reference systems

[146]. This modified γaH function has a significant impact on hydrogen bonding and

hence Yang et al [146] systematically optimized the parameters (including the Hubbard

derivatives U d
a for the third order approximation) by fitting based on the binding energies

and proton affinities of a set of gas-phase compounds that are of general biological

interest.

To this correction the DFTB3 binding energy for the water dimer could be reduced to
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−5.4 kcal/mol which is very close to the expected value of −5.0 kcal/mol [172]. Hence,

this adoption was widely incorporated [173, 174, 175] but ignoring the crucial fact that

this correction only holds for binding energies. Therefore, plotting all the objectives

(enthalpy [kcalmol] and RMSD [Å] error for the QCE set and geometry error [Å] for the

water monomer as well as Mulliken charge error [e] for the water monomer) against

different values of ζ reveals an intrinsic problem of the proposed damping term as shown

in Figure 3.11.

Figure 3.11 – A overview of the effect of the γ-function by Yang [146] with different values
for ζ. The error in enthalpies are given in [kcal/mol], RMSD [Å], monomer geometry
error [Å] and charge error [e]. Although the energies can be improved compared to the
standard calculations (limes) this comes at cost of inferior geometries.

Although there is a clear minimum for the enthalpy error around ζ≈ 5 one can see that this

only comes at a cost of larger deviation of the geometries. This suggests that obtaining

better binding energies at the same time worsens the forces and hence puts the damping

function proposed by Yang et al at question. That this can lead to drastic consequences

as was first published by Choi et al [175] without attributing the large voids that formed

during the simulation to the damping function of Yang [146]. Figure 3.12 shows the

snapshots of the bulk water, hydrated hydroxide, and hydrated excess proton system after
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50 picoseconds of NVT molecular dynamics simulations at a density of 0.97 g/mL. As

stated in [175], this phenomenon observed occurs primarily due to the over-coordinated

water molecules which in turn is an artefact of the damping function. Therefore, a closer

Figure 3.12 – Snapshots of the neutral, hydroxide, and protonated bulk system after 50
ps of the MD time evolution using the DFTB method (with γaH correction). The voids
are detected in all simulations [175].

look at the γ function was taken and a more flexible damping correction of the form

cor =−a ·exp(
−(R −b2)

c2 )+1 (3.9)

proposed, where a,b,c are parameters to be fitted. The basic idea starts with the

assumption that the short and long term interaction should not be altered heavily. Hence,

a Gaussian function is introduced with flexible width c, mean b and amplitude a. The

resulting gamma function has the final from of

γaH = 1

RaH
−S

[
1−a ·exp(

−(R −b2)

c2 )

]
(3.10)

As comparison, the functional forms of the standard γHO interaction (black) is plotted

against the corrected Yang (red) and the proposed (green) relations (Figure 3.13). Instead
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of a switch function as suggested by Yang and plotted with solid blue line, a Gaussian

function is proposed (dashed blue line) to allow better interaction energies and forces as

shown in Figure 3.13.

Hence, the resulting task is to optimize the parameters a,b,c such that good agreements

in the desired objectives can be made. The set-up described earlier is used to perform

this multi-objective optimization problem and results are presented in the following

subsection.

Figure 3.13 – Different γ-functions are plotted on the left, where the black line represents
the original, the red line the function proposed by Yang [146] and in green our suggestion.
The actual correction functions are shown in the middle where the blue line is the switch
function by Yang and the blue dotted line our proposed correction. On the right the
short range function S is plotted.
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3.7.2 Results

Figure 3.14 – Reduced objective space where water geometry error f3 and charge error f4

are mapped to one dimension. The red dots represent the parameters that belong to the
Pareto-set. The blue surface is the interpolated Pareto-front and the evaluated vectors
are shown as black dots.

The results from the multi-objective optimization are plotted as reduced objectives as

shown in Figure 3.14 where again the blue surface represents the Pareto-front and the

small dots the solution vector xk = {ak ,bk ,ck } with corresponding objectives. Coloured

in red are the solutions of the Pareto-optimal-set and to gather more information the

scatter-plot matrix is investigated in Figure 3.15. There are only marginal changes in

charge errors and water monomer geometry as interfered from the scatter-plot matrix.

This is somewhat not surprising since the γ-function correction is limited. Thus especially

to the properties such as monomer geometry and partial atomic charge, small changes

can be expected. The focus is shifted to the total geometric and energetic error since

those properties are more affected by the γ-function through a stronger hydrogen bond

behaviour. From the closer inspection of the total RMSD versus enthalpy error plot

in Figure 3.16 it becomes clear to apply a selection of RMSD < 0.9 Å to the actual

data. This plot also indicates, that the γ-correction can not further improve on total

energy error beyond about 0.2 kcal/mol. A review of the k = 4 medians of the clustering

algorithm revealed some correspondence of over-structured first peak hight in the radial

distribution function of the oxygen-oxygen in the initial NVT simulation. Hence, applying

a stricter selection of RMSD < 0.75 Å was enforced. As mentioned above, the charge

and monomer geometry error are marginally altered and hence from the trimmed set we

sorted according to minimal energy error and the final solution vector was found to be

x f i nal = {0.7700578, 0.3843653, 3.452199}.
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Figure 3.15 – Scatter-plot matrix of all objectives of the optimization run for the γ

function fitting

Figure 3.16 – The total RMSD error versus the total enthalpy error for the entire set of
solutions to the γ optimization problem
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3.8 Bulk water properties

A major challenge in condensed matter simulations is understanding the structural and

electronic properties of liquid water at ambient conditions. Water is a crucial ingredient

for a large variety of systems of importance, from basic chemistry, biology, and physics,

as well as in the applied fields of catalysis and energy production. The water molecule is

somewhat special in respect that it possess a large dipole moment and polarizability, is a

multiple hydrogen donor and acceptor and can easily build network structures. The total

cohesive energy in the condensed phase is therefore a sum of many weak interactions

and the theoretical model face the challenge to describe many different effects. The

development of empirical potentials for water [89, 176] improved the understanding

of water’s behaviour and properties [177, 178, 179]. However, empirical models lack

transferability and might fail if used under conditions outside of their fitting range and

moreover, when water takes an active role in a chemical process, the electronic properties

of the water molecule need to be taken into account. In this respect, first-principle methods

offer the only solution.The capability to reproduce properties of complex systems such as

liquid water can therefore be used to judge the sophistication and predictive power of

a given model. Many DFT based simulation of bulk water have been reported in the

literature, and in this context three main methods of sampling the phase space can be

recognized [180]; Car-Parrinello molecular dynamics (CPMD) and derivatives thereof

[181, 182, 183, 184, 185], Born-Oppenheimer molecular dynamics (BOMD) [186, 187, 184]

and Monte Carlo (MC) sampling [188].

Between these extreme approaches of classical force fields and ab-inito description of

water are the semi-empirical quantum chemical methods [189]. Since they are still

quantum-mechanical at their core, these methods contain the physics of polarizability

that is difficult to capture otherwise. At the same time, these methods are also faster

than traditional electronic structure approaches.

However, to date only few reviews addressing the performance of semi-empirical methods

reproducing bulk water at ambient conditions [173, 158] exists. This is somewhat

surprising especially since DFTB is predominantly used in biochemical simulations

[190, 85, 191] where it is crucial to be able to reproduce ambient water conditions for

enzymes or small proteins. Hence, in this section we compare certain properties of

bulk water at ambient conditions of the standard PM6 and DFTB3 with the optimized

methods introduced in this manuscript. For that purpose, density, radial distribution

function, surface tension and diffusion coefficients are compared.

3.8.1 Computational Details

All calculations presented have been performed with the CP2K program [149]. The

classical force-fields TIP3P [192] and SPC/E [193] are employed with the standard

reference parameters. The system sizes for the classical force-fields correspond to 256 water

molecules whereas the model system for the semi-empirical consist of 115 water molecules
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in a cubic simulation cell under periodic boundary conditions (PBC). Initial configuration

for the semi-empirical bulk simulations were taken from extensively equilibrated TIP3P

runs at ambient condition. The NVT ensemble simulation were carried out at a density

of 999.5 kg/m3 corresponding to a square cell 15.1 Å on a side. Simulations were run

at 300 K using the Nose-Hoover thermostat [44,45] and an integration time step of

1 fs was applied. Further NPT simulations were carried out at the thermodynamic

constraint set to ambient conditions, that is, T = 300 K and p = 1 bar. Additional NVE

simulations were carried out at respective equilibrium densities obtained from the NPT

simulations. The atomic cut-off radius for the evaluation of the Coulomb integrals was

set to 12 Å and a modified Klopman-Dewar-Sabelli-Ohno screening (KDSO-D) [158] was

employed. The same cut-off value was used for the exchange integrals. The periodicity,

and hence the electrostatic long-range part was handled through the usage of multi-pole

Ewald summation schemes. The maximum level of multi-poles expansion used for the

electrostatics was set to use up to the Quadrupole term. For the DFTB3 calculations

smooth particle mesh using beta-Euler splines were employed. The usual trajectory

length was targeted to be 100 ps with 5 ps equilibration. The computational details for

the Monte Carlo simulations of the ab initio reference calculations can be found [194].

The NVT slab calculations needed to model the ambient liquid-vapour interface and

hence were performed in a similar fashion to the bulk water NVT calculations (similar

set-up to Murdachaew et al [158]) with the exceptions that 512 water molecules were used

and the dimension of the rectangular box were 19.7 Å(x) × 19.7 Å(y) × 100 Å(z). This is

larger than proposed by Murdachaew but necessary for the fluctuation surface analysis.

The simulation time for the big system was targeted for 300 ps for both semi-empirical

simulation and 6 ns for the force field methods.

3.8.2 Radial Distribution Functions

The radial distribution functions, gOO, gOH , and gH H are commonly used when the

structure of the liquid water is studied [195]. These intermolecular partial pair correlation

functions for liquid water at 25◦ C were determined from neutron diffraction data by

Soper et al [196, 197].The old [196] and new [197] results for gOO, gOH , and gH H are

in good agreement, except that the first O-H peak at 1.8 Å is increased by about 14%

compared to that of previous analysis. The differences probably represent the currently

available accuracy in determining the site-site pair correlation functions for water. The

radial distribution functions, gOO, gOH , and gH H are easy to calculate from molecular

dynamics data and are generally used when different water models are compared with

experimental.

90



3.8. Bulk water properties

3.8.2.1 Results from PM6 and DFTB3 simulations

The radial distribution function computed from our simulations for the PM6, PM6opti m ,

DFTB3 and DFTB3opti m are compared with experimental data and ab-inito results. For

that, BLYP (from the name Becke for the exchange part and Lee, Yang and Parr for the

correlation part) density functional theory (with dissperison correction D3) calculations

were employed. Details of the Monte Carlo simulation for the ab-inito calculations can be

found [170] and [198]. For a comparison on the PM6, in a recent publication [199] Welborn

re-optimized PM6 with a force-matching approach and hence the resulting parameters

are used to perform the same canonical ensemble simulation. The entire analysis is

carried out with the help of Travis [200], an analyser and visualizer for Monte Carlo

and Molecular Dynamics Trajectories. In Figure 3.17 we show the results of the oxygen-

oxygen radial distribution function goo for the PM6 methods with different parameter

sets (original, Welborn [199] and our optimized set) as well as the original DFTB3 and

the γ-corrected version with parameters a,b,c obtained from our optimization runs. It

becomes clear that the original PM6 method has features shifted dramatically outwards

and thus fails in predicting the correct structure. Also, the first peak is slightly shifted to

lower distances wrongly packing the bulk water. The parameter set from Welborn et al

[199] show slight over-structuring in the oxygen-oxygen radial distribution function but

are in much better agreement with the experimental results as the original parameter set.

Although stating in their publication, Welborn et al [199] claimed that force-matching

is necessary to properly capture the basic structure of water, we could show that the

small QCE reference data set is enough to reproduce a reasonably close approximation

to the experimental curve. Especially the mid and long range part agree quite well with

the reference curve whether the first peak is slightly over-pronounced and is generally

attributed to the lack of quantum effects in the simulations [170].

For the original DFTB3 method similar offsets as for the original PM6 methods are

obtained. The goo is shifted to the right and the mid and long range parts are almost flat

and unstructured. The γ-correction improves drastically the mid and long range parts at

the coast of a well over-pronounced first peak attributed to a more packed oxygen-oxygen

bulk behaviour.

Both BYLP Monte Carlo simulation results are shown in Figure 3.17. Although the

sampling was carried out in NPT one can deduce that the standard BLYP without

dispersion correction performs rather poorly and is highly over-structured but the

addition of the missing theory reduces this error.

Assessing only the oxygen-oxygen radial distribution function, we could show that the

optimized parameters for PM6 show even better agreement to experimental results than

elaborate and time-consuming ab-inito methods such as BLYP and BLYP-D3.
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Figure 3.17 – Different oxygen-oxygen radial distribution functions from NVT simulations
at reference density σ = 999.5 kg/m3 and T = 300 K. The BLYP results of the NPT
Monte Carlo simulations are shown additionally for comparison purpose [170, 198]
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3.8.3 Density

The density of water is approximately one gram per cubic centimetre. It is dependent on

its temperature, but the relation is not linear and uni-modal rather than monotonic (see

table 3.12).

Temp (◦ C) +100 +80 +60 +40 +30 +20 +15 +10 +4 0

Density (kg/m3) 958.4 971.8 983.2 992.2 995.65 998.21 999.1 999.7 999.97 999.84

Table 3.12 – water density for different temperatures

When cooled from room temperature liquid water becomes increasingly dense, as with

other substances, but at approximately 4 C◦, pure water reaches its maximum density.

As it is cooled further, it expands to become less dense. This unusual negative thermal

expansion is attributed to strong, orientation-dependent, intermolecular interactions.

Hence in the next subsection, the density is calculated for chosen semi-empirical methods

at ambient condition. Thus, the pressure of 1 atm and Temperature of 300 K are

maintained with standard Nosé-Hoover thermostat and barostat, see CP2K reference

[149] and computational details for further information.

3.8.3.1 Results from PM6 and DFTB simulations

(a) TIP3P density simulation (b) SPC/E density simulation

Figure 3.18 – Force-field simulation at ambient conditions, T =300 K, p = 1 atm and
resulting instantaneous density fluctuation and mean.
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(a) Original PM6 simulation (b) PM6 simulation with param-
eters from Welborn et al [199]

(c) PM6 with optimized parame-
ter simulation

Figure 3.19 – Different PM6 semi-empirical simulations at ambient conditions, T = 300
K, p = 1 atm and resulting instantaneous density fluctuation and mean.

(a) DFTB3 original density simulation (b) DFTB3 with proposed γ-function correction
density simulation

Figure 3.20 – DFTB3 semi-empirical simulation at ambient conditions, T = 300 K, p =
1 atm and resulting instantaneous density fluctuation and mean.
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(a) BLYP density Monte Carlo simulation (b) BLYP-D3 density Monte Carlo simulation

Figure 3.21 – Fluctuation of the instantaneous density as a function of the Monte Carlo
cycles for the NPT simulation.

The value of the density of liquid water is obtained from averaging the fluctuating

instantaneous density from the molecular dynamics simulation and Monte Carlo sampling

for the ab-inito methods [170] starting after an equilibrium phase (20 ps or 30000 Monte

Carlo cycles). The instantaneous density and the corresponding average are depicted in

Figure 3.18a to 3.21b, while the calculated average value with the associated standard

deviation are reported in Table 3.13. Our PM6opti m results (shown in Figure 3.19c) for

the density of liquid water at ambient condition are ≈ 905.95 kg/m3 which is in moderate

agreement with the experimental value of 995.65 kg/m3 but much better than ab-inito

BLYP values of 799.12 kg/m3 [170] and comparable to dispersion corrected methods such

as BYLP-D3 1063.68 kg/m3. For the DFTB3opti m density (shown in Figure 3.21a and

Figure 3.21b) 1033.57 an improvement over the standard DFTB3 density of liquid water

of 899.06 can be identified. A possible reason for this is that the water density depends

crucially on the medium to long range part of the potential [170]. Thus, the DFTB3opti m

density result is almost comparable to expensive and time-consuming ab-inito methods

such as PBE0-ADMM-D3 [170] and in clearly in the range ob BLYP-D3 (shown in Figure

3.21b).

3.8.4 Surface tension

The ability of a model to predict interfecial properties, as is the case of the surface tension

of the vapour-liquid interface can give indication about the quality and performance.

The determination of the surface tension of water by computer simulation has been

the subject of several studies [201, 202, 203, 204, 205, 206, 207, 208, 209, 210]. Usually,

a slab of liquid is placed in contact with vapour and the surface tension is computed
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density [kg/m3] standard deviation relative error in %

TIP3P 971.5336 17.3834 -2.5110
SPC/E 992.6380 15.7346 -0.3933

PM6 original 1717.5825 30.7255 72.3517
PM6 welborn 1038.7378 21.5797 4.2327
PM6 optim 905.9513 26.7556 -9.0919

DFTB3 original 899.0629 39.7607 -9.7831
DFTB3 optim 1033.5710 30.9530 3.7142

BLYP 799.1156 17.3238 -19.8124
BLYP-D3 1063.6782 18.1213 6.7353

Experiment 996.5570

Table 3.13 – Different density values obtained from NPT simulations compared to results
from ab initio and experiment at ambient condition (T = 300K, p = 1 bar).

from a mechanical route which requires the calculation of the pressure tensor [211].

Unfortunately, the values of the surface tension from different authors differ in some

cases considerably. Amongst other reasons for this discrepancies is that reliable values of

the surface tension are only obtained after considering sufficiently large systems and long

simulation runs [212].

In this subsection we consider simulations of the -liquid interface of PM6opti m , DFTB3opti m ,

classical forcefields such as TIP3P and SPC/E and determine the surface tension from

the mechanical route as well as with a new method based on the fluctuation of the surface.

The basic idea to use the surface fluctuation to determine the surface tension is described

by Chandler [213] and briefly discussed below.

3.8.4.1 Mechanical Route to Surface Tension

A very popular and straightforward way to calculate the surface tension γ is to use the

pressure tensor. For a planer interface perpendicular to the z axis, γ is given by

γ=
∫ inf

inf
d z

[
pN (z)−pT (z)

]= Lz
[
pN −pT

]
, (3.11)

where pN (z) and pT (z) are the normal and tangential (local) components of the pressure

tensor at position z, respectively. For a planar interface, pN ideally does not depend

on z and is equal to the vapour pressure. pN and pT in Equation 3.11 are macroscopic

components of the pressure tensor defined in terms of the volume average of their local

components counterparts [214]. Considering that the set-up of the simulation stabilizes

two vapour-liquid interfaces, the working expression for the computation of the surface

tension takes the simple expression

γ= Lz

2

[
pN −pT

]
. (3.12)

Hence, a standard simulation in a canonical ensemble can be carried out where the

pressure tensor is required to be calculated. Since this is a basic feature of the CP2K
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package we refer to [149] for further details.

3.8.4.2 Surface Tension from Surface Fluctuation

The surface tension can also be estimated from the fluctuation of the instantaneous

interface. Therefore, firstly a instantaneous liquid-vapour interface needs to be defined.

The basic idea starts with the instantaneous density field at space-time point r, t

ρ(r, t ) =∑
i
δ(r − ri (t )) (3.13)

where ri (t ) is the position of the ith particle at time t and the sum is over all such

particles of interest. A more manageable field can be formed through coarse-graining.

Willard and Chandler [213] used a convolution with the normalized Gaussian functions

φ(r ;ζ) = (2πζ2)−d/2exp(−r 2/2ζ2) (3.14)

where ζ is the coarse-graining length, and d stands for dimensionality. Hence, applied to

ρ(r, t ) we have the coarse grained density field

ρ(r, t ) =∑
i
φ(|r − ri (t )|;ζ) (3.15)

The choice of ζ will depend upon the physical conditions under consideration. Conse-

quently, the instantaneous interface is defined as

ρ(s, t ) = c (3.16)

where c is a constant. In other words, the instantaneous interface is defined as points in

space where the coarse-grained density has the value c. For molecular configurations,

equation 3.16 can be solved quickly through interpolation on a spatial grid. Figure 3.22

[213] illustrates what is found for a slab of liquid water at conditions of water-vapour

coexistence. Half of the bulk density c = 0.016 Å−3 was used as constant and ζ= 2.4 Å

for the coarse graining. As described in [213] the time evolution of the liquid-vapour

instantaneous interface can then be used for estimation of the surface tension. For

that, the power spectrum of the instantaneous interface must be obtained. Hence, the

Fourier transform h̃(k) is obtained from the instantaneous interface configuration h(x, y)

according to [213]. The power spectrum of the simulated instantaneous interface is

in good agreement with the capillary-wave theory prediction (〈|h̃(k)|2〉 ≈ 1/βγk2) for

wave-vectors smaller than ≈ 2π/9Å. For larger wave-vectors, the power spectrum is

sensitive to molecular detail, hence to the coarse graining factor ζ. Fitting the data of

the SPC/E simulation yields γ= 62.0±0.5 mJ/m2 which is in reasonable agreement with

the experimental value of 72 mJ/m2 and simulated values 63.6±1.5 mJ/m2 [215].
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Figure 3.22 – Snapshot of a slab of liquid water with the instantaneous interface s rendered
as a blue mesh on the upper and lower phase boundary. The slab is periodically replicated
in the horizontal directions. (b) The time correlation function governing the spatial
fluctuations in the intrinsic interface s. Here, angle brackets represent an equilibrium
average and δsz (t ) = (s(t ) · ẑ −〈s〉 · ẑ, where s(t ) is the position of the interface at time t
and ẑ is the unit vector in the z direction (as is indicated in panel a).

Figure 3.23 – Power spectrum of the interface with different coarse graining ζ compared
to the capillary-wave model.
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3.8.4.3 Results from PM6 and DFTB simulations

(a) TIP3P simulation (b) SPC/E simulation

Figure 3.24 – Accumulated average values of the normal Pz and tangential (Px and Py )
components of the pressure tensor as obtained from direct simulation of the vapour-liquid
interface for the TIP3P and SPC/E model of water at a temperature of T = 300 K. The
accumulated average value of the surface tension as obtained from the pressure tensor
with Equation 3.11 is also presented with corresponding standard deviation.

A first investigation of the classical force field approaches was carried out. Hence in Figure

3.24a and 3.24b the normal (red) and tangential components (blue and green) of the

pressure tensor is plotted over time for the slab simulation at T = 300 K for the TIP3P

forcefield. The accumulated running averages are shown in the same colors respectively

and both later pressure components Px and Py converge as expected. The calculated

surface tension from Equation 3.12 is plotted as running average (black solid line) with

according standard deviation (gray area) and final error estimation (black dotted line).

Vega et al [215] stated that a total simulation time of 1.5-2 ns are needed to provide

accurate values and Chen et al [216] even used longer trajectories (5 ns) for their analysis.

However, the calculated standard deviations of 2 mN/m [216] are in good agreement with

our obtained standard deviations of 2.32 mN/m. As from the plot in Figure 3.24a can be

interfered, even though it takes long simulation times to get better convergence on the

surface tension, to obtain values in the boundaries of the error it appears that shorter

trajectories are already sufficient. Therefore, starting from an equilibrated slab it can be

assumed that > 1 ns already provide values within the final standard deviation. The

same analysis was carried out for the PM6 and DFTB3 simulations and are presented

in Figure 3.25a and 3.25b. The final value of the surface tension for the DFTB3 seems

comparable to the value obtained from the classical approach with TIP3P. Both, force

field and DFTB3 methods underestimate the experimental reference value of 71.97mN/m.

The results from the PM6 simulations indicate an overestimation of the surface tension

although it is difficult to conclude since the standard deviation is still high. The resulting

Table 3.14 summarizes the finding of the classical force-field approaches (TIP3P and
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SPC/E) and the semi-empirical methods (PM6 and DFTB3).

Method TIP3P SPC/E PM6 DFTB3

Surface tension γ [mN/m] 46.35 59.56 101.4 41.2

standard deviation σ [mN/m] 2.32 3.55 30.5 8.9

Table 3.14 – Surface tension from mechanical route

(a) Average values of the Pressure components
for the PM6opti m simulations.

(b) Average values of the Pressure components
for the DFTB3opti m simulations.

Figure 3.25 – The normal Pz and tangential (Px and Py) components of the pressure
tensor shown with according surface tension and standard deviation as obtained from
Equation 3.11.

The calculation of the surface tension from fluctuations of the instantaneous interface

were conducted with a coarse graining of ζ = 1.2. An analysis as shown in Table 3.15 of

different ζ’s and a visual inspection of the single water molecule resulted in the decision

to use the value of 1.2 for ζ.

The power spectrum was fitted according to the relation < |h̃(k)|2 > 1/βγk2 for wave-

vectors smaller than 0.8 [Å−1]. Where β= 1/(kb ·T ) and γ is the resulting surface tension.

The results for the TIP3P liquid-vapour interface simulation are shown in Figure 3.26a.

Where the black dotted line represents the surface tension obtained from the mechanical

route (46.3 mN/m) and the red dotted line is the linear regression of the power spectrum

resulting in a value of 50.83 mN/m. The conducted analysis and the resulting value

are in reasonable agreement with the mechanical route and hence also in the standard

deviation for the surface tension as evaluated earlier. An additional affirmation of a

good fit is the value for the slope of the curve which turns out to be -2.066 and hence

sufficiently close to the expected value of -2.0 of the underlying theory. The regression
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ζ = 6 ζ = 3 ζ = 1 ζ = 0.5

Table 3.15 – Different coarse graining ζ

was carried out up to a wave-vector length of k = 0.8 and it is crucial to mention that the

fit is very sensitive to that value. In principle only the linear regime of the plot should

be fitted and therefore an intended smaller value is used.

(a) Power spectrum of the TIP3P force-field. (b) Power spectrum of the SPC/E force-field.

Figure 3.26 – Power spectrum of the TIP3P interface with a coarse graining of ζ = 1.2
and different wave-vectors k. The black dotted line is the reference value 46.3 mN/m
obtained from the mechanical route and red the fitted regression line and the resulting
surface tension 50.83 mN/m. In light gray the number from the linear regression is
plotted which corresponds quite well to the theoretical value of -2 and hence the resulting
value of the surface tension can be assumed to be reasonable.

Method TIP3P SPC/E DFTB3

Surface tension γ [mN/m] 50.82 64.46 27.6

Table 3.16 – Surface tension from instantaneous fluctuations
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Figure 3.27 – Surface tension from fluctuation for the γ-corrected DFTB3 method

3.8.5 Diffusion

Diffusion is defined by Collins Essential English Dictionary [217] as the random thermal

motion of atoms and molecules in gases, liquids, and some solids. The self-diffusion

coefficient is the average speed that a specific water molecule holds, in order to diffuse

in liquid water. The term ’self’ is used to distinguish from ’bulk’ diffusion and relates

to the progress of distinguishable particles. Ds is measured by incoherent quasi-elastic

neutron scattering.

In this study, the self-diffusion coefficient of water was calculated using the Einstein

equation [218].

Ds = l i mt→inf

[ 〈|r (t )− r (0)|2〉
6t

]
(3.17)

where r (t ) is the position vector of the center of mass at time t , and the brackets 〈· · · 〉
denote an average over both time origins and individual water molecules. The mean

square displacement (MSD) refers to the numerator and the experimental self-diffusion

value for water, as determined by [219] is 2.3±15% ·10−9m2s−1. D was calculated by

fitting a straight line to the MSD at intermediate times to avoid contamination from

the ballistic regime at smaller times and the lower statistics region at the end of the

trajectory.

3.8.5.1 Results from PM6 and DFTB simulations

Resulting MSD plots are shown in Figure 3.28a,3.28b, 3.29a, 3.29b and 3.30b, 3.30a.

In Table 3.17, all self-diffusion coefficients obtained from the NVE simulations are

summarized. As expected for the classical force-field approaches, the TIP3P water model

overestimates the self-diffusion as well as the PM6opti m method. However, the PM6opti m

parameter set is still in better agreement than the classical calculations. SPC/E is known
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(a) Mean square displacement as a function of
time for the TIP3P force field

(b) Mean square displacement as a function of
time for the SPC/E force field

Figure 3.28 – Mean square displacement and corresponding fitting for the determination
of the self-diffusion coefficient for the classical approaches.

(a) Mean square displacement as a function of
time for the original DFTB3 method

(b) Mean square displacement as a function of
time for the γ corrected DFTB3 method

Figure 3.29 – Mean square displacement and corresponding fitting for the determination
of the self-diffusion coefficient for the both DFTB3 methods.
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(a) Mean square displacement as a function of
time for the PM6 method with the parameters
from Welborn et al [199]

(b) Mean square displacement as a function of
time for the PM6 method with optimized param-
eters

Figure 3.30 – Mean square displacement and corresponding fitting for the determination
of the self-diffusion coefficient for both PM6 methods.

for performing very well for the diffusion coefficient and the value is indeed very close

to the experimental measurement. Furthermore, the parameter set from Welborn et

al [199] for the PM6 method demonstrates very good agreement to experiment. The

γ-corrected DFTB3 exhibits major improvements over the standard DFTB3 results and

reports values also in good accordance with the experimental value.

TIP3P SPC/E DFTB3 original DFTB3 final PM6 Welborn PM6 optim Experiment

D [10^-9 m^2/s] 5.6319 2.9690 10.6392 2.0513 2.9867 4.4335 2.2260

Table 3.17 – Different self-diffusion values from the NVE simulations of bulk water
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4.1 Summary

The main purpose of this work was to establish a more systematic approach to parameter

optimization in computational chemistry where the subjective weighting of objectives is

not part of the optimization process itself but the decision making and selection of the

final solution is carried out a posteriori. This separation introduces more transparency

and might help to further unleash the potential of all the computational chemistry

methods from ab-initio to semi-empirical and force field approaches.

The first part of the thesis was dedicated to elaborating the differences of single-objective

optimization and multi-objective optimization. Thus, the theoretical concepts of parame-

ter optimization are reviewed and it is shown that the multi-objective optimization can

not be seen as simple extension of the single-objective case. It is included that the usual

scalarization techniques to linearly combine different objectives into a single-objective

problem by weighting renders the approach unfeasible because some functions can not

be added up properly with constant weights. Additionally, not all solutions of the

Pareto-front can be recovered with the preference-based approaches especially when the

Pareto-set is non-convex. The weighting in the classical algorithms is specially delicate

since a priori knowledge is required and it is not clear how the normalization (to render

the objectives dimensionless) and the according weighting should be carried out. The

multi-objective approach presented in this work demonstrate a systematic way to conduct

parameter optimization where more than one objective is involved. This procedure

does not introduce any ambiguity or bias and therefore could improve many aspects of

parameter optimization in computational chemistry.

Further, a short introduction to Evolution Strategy (ES) algorithms is given. The basic

concept is a repeated process of stochastic variations followed by selection, inspired by the

principles of biological evolution. This concept is applied to parameter optimization and

the Covariance Matrix Adaptation (CMA) algorithm is introduced. The CMA process

operates with a covariance where new trial solutions are generated and by accepting

the offspring (new solutions) the covariance and mean are adapted. This mechanism
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should drive the entire process towards a minimum solution. In principle, the number

of offspring can be chosen but allowing only one offspring per parent results in a (1+1)

ES selection scheme. The elitist (1+1)-CMA-ES is then presented and outlined as

basis for the resulting multi-objective optimization algorithm. For the multi-objective

optimization case, a population of λ-(1+1)-CMA-ES instances are maintained. From the

population offspring a selection is carried out where solutions are compared over their

level of non-dominance and crowding-distance (a measure to achieve a good spread of

the Pareto front). Again, the selection process should drive the optimization run towards

the Pareto front and recover all feasible trade-off solutions.

The second part of the thesis reviews the common methods in semi-empirical quantum

chemistry. The aim is to give a general introduction on semi-empirical methods and

the essentials of modern semi-empirical molecular orbital theory. The grounds of semi-

empirical molecular orbital theory is based on two approximations: self-consistent field

(SCF) and linear combination of atomic orbitals (LCAO). The former is also known as

mean-field approximation where the one-electron Hamiltonians are used to solve for the

wave-function of the system. The latter is a proposal by Huckel that the molecular orbitals

can be represented as a linear combination of atomic orbitals. These simplifications

are then used to solve the Schrödinger equation. Finally two models, the Neglect of

Diatomic Differential Overlap (NDDO) and Density Functional Tight Binding (DFTB)

are outlined and all the necessary parameters explained. There are many methods based

on the NDDO model and they differ manly in the core-core repulsion terms. One of the

most prominent (PM6) is then used for later re-parametrization.

In the last part of this work we apply multi-objective parameter optimization to the

semi-empirical quantum chemistry methods and intended to answer several questions.

First, if it is possible to reproduce bulk properties from cluster reference data. Hence, a

review of available water cluster databases is carried out and with help of quantum cluster

equilibration (QCE) a final selection obtained. Indeed, with the small selection of 8 water

clusters the PM6 method could be re-parametrized to give good bulk properties. This

finding is relevant not only because it demonstrates the possibility that bulk behaviour

can be recovered from cluster but also the results might contribute to the understanding

and structure of liquid water. Second, we wanted to show that the underlying model of

NDDO is capable of capturing important properties such as hydrogen bonds and van

der Waals forces. Again, with the successful re-parametrization of PM6 we could show

that this method provides enough flexibility to describe such phenomena even though we

allowed the individual parameters only to change ±10% from the original values. We

could show that there is no need for additional dispersion or hydrogen bonding correction

as was proposed in the past. Therefore, we advocate a rigorous re-parametrization before

enhancing a method and thus explore the boundaries of the underlying model first.
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4.2 Outlook

The work presented in this thesis provides the ground work for a number of new areas

of research. An immediate area of interest is the selection of the reference set in more

detail. There is consensus one aspect of water’s molecular structure sets it apart from

most other liquids is the hydrogen bonds. However, based on its ability to form up to 4

hydrogen bonds it is clear that the water dimer itself would not be representative for

water. But that is where the consensus ends. The standard picture of liquid water [1]

posits that each molecule of H2O is, on average, bonded to four others in a tetrahedral

motif. This would result in a repeated, constantly reorganizing three-dimensional network

extending through the liquid. Hence, a reference set of tetrahedral coordinated water

would represent best that picture. In 2004 an different view on water emerged [x]

advocating that molecules in liquid water bind on average to just two others, forming

chains and rings. From their point of view, a reference set with mainly 2-fold coordinated

water molecule would make more sense. In this work, we relied on the selection that

was carried out with the quantum cluster equilibration model and adds up to a view

that suggest a muddle of two different structures. Employing a bulk reference set for

multi-objective optimization with objectives such as error in forces and energies or dipole

moments and comparing the results (the final Pareto-front) with the one obtained from

smaller water cluster sets could help to improve our understanding of liquid water. In

other words, simply comparing optimization runs from reference bulk sets (from ab-initio

calculations) with cluster structures could shed some light on which structures are well

described and might help unveil irrelevant clusters and therefore add some insight to the

discussion on coordination of liquid water. Thus, the multi-objective approach could

contribute towards an understanding and answering the important question of what

clusters can tell us about the bulk.

Concerning the parameter optimization in the specific case of PM6 one important input

to the optimization process was the boundaries that were set only ±10 % of the original

values. One should investigate the effect of larger bounds. Giving the optimization routine

more flexibility should further improve the description of water at ambient condition.

However, caution is advised when setting the boundaries since setting the limits too wide

would break the transferability and invalid some properties that were accounted for in

the past. Therefore, a closer look at parameter boundaries and other properties such as

ionization potential should be carried out.

Of course other objectives for the optimization process could be imposed besides the ones

employed in the present work. Hence not only the effects of the parameter bounds but

also the consequences of different objectives should be investigated. One could include

the ionization potential directly into the optimization process or include some sort of

electro-static potential fitting where highly accurate ab-initio reference sets would be

needed. Additionally, non-physical aspects such as SCF cycles or run times could be

used to optimize parameter to faster molecular dynamics simulations. As we have seen,

for the DFTB3 γ-function optimization, the charge and water monomer geometry have
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not changed substantially and hence an additional run without those objective might

improve results. In general, it would be very interesting to apply the multi-objective

framework to re-parametrize the entire DFTB3 repulsive terms. Hence, this would be

more concordant with our approach of global optimization and that corrections (such as

the γ-function correction) should only be applied after a rigorous re-parametrization of

the underlying method.

A designated area that would benefit from the multi-objective approach is the classical

force field development. Accurate force fields are needed to obtain meaningful results

from molecular dynamics simulations and recent developments are trying to incorporate

quantum mechanics explicitly to construct the inter-atomic potentials. Usually, either

experimental data such as enthalpy of vaporization, enthalpy of sublimation, dipole

moments and various spectroscopic parameters or ab-initio calculations are used as

reference data. Multi-objective optimization with highly accurate ab-initio reference

data could be used to improve the classical force field approach. Even short molecular

dynamics calculations could be used in the optimization process itself to determine

properties such as self-diffusion or radial distribution functions which in turn can be used

as independent objectives. Needless to say that this is only possible because molecular

dynamics with force fields are very fast and therefore simply obtained. Hence, because

multi-objective optimization provides a great systematic framework with a wide range of

flexibility it would be a great application to improve the classical force fields and push

the accuracy limits even further.

A significant share of molecular calculations in quantum chemistry is based on density

functional theory (DFT). The success of DFT can be attributed to maintaining a good

accuracy while the computational cost is low. One of the major technical aspects of

DFT calculations is the basis set used to solve the Kohn-Sham equations. There exists a

wide range of used functional forms, including Gaussian functions, Slater functions, plane

waves, wavelets, numerical basis function, and many more. For each of these functional

forms, there are schemes to increase the size, and hence the accuracy of the basis.

Often, there is no perfect recipe to do so, and different schemes will be used to obtain,

for example, good total energies, geometries, interaction energies, or special electronic

properties. Therefore, multi-objective optimization could also prove useful in the field of

basis set optimization where simultaneously several objectives are optimized. The gain

from optimal small basis sets is enormous since at fixed system size, the density matrix

update procedure scale at least quadratically or even cubically with number of basis

functions. Another advantage of the multi-objective approach for basis set optimization

is that additional non-physical objectives can be added. Such objectives might be the

condition number of the overlap matrix since this quantity governs computational cost of

diagonalization or total number of SCF cycles. Hence performance based descriptors can

be added directly in the parameter optimization process. Even more, the Pareto set for

a given reference data and basis set size could be stored in a database. These tables then

can be accessed by the end-user and by providing the desired objectives and requested

accuracy, a resulting basis set is returned with the required demands.
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As a final remark, it can be noted that, due to the general aspects of the multi-objective

optimization algorithm, the possible applications are virtually infinite. Although, in

many cases there exist more specialized and problem specific algorithms that also include

gradient information or other available constraints or resources for the single-objective

case. However, once one deals with more than one objective it is crucial to be aware of

the limitation of the scalarization approach and with the present thesis we expect to

pave the way for a more systematic take on parameter optimization in computational

chemistry.
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