<div dir="ltr">Dear Prof. Hutter,<div><br></div><div>Thanks for your explanations and suggestion. I will read the </div><div>corresponding papers. Btw, does the ddapc method solve</div><div>this problem? There is a 'e_decpl' decoupling energy in the </div><div><span style="color: rgb(111, 66, 193); font-family: SFMono-Regular, Consolas, 'Liberation Mono', Menlo, Courier, monospace; font-size: 12px; white-space: pre;">cp_ddapc_apply_CD. Or it still suffers the same</span></div><div><font color="#6f42c1" face="SFMono-Regular, Consolas, Liberation Mono, Menlo, Courier, monospace"><span style="font-size: 12px; white-space: pre;">problem?</span></font></div><div><font color="#6f42c1" face="SFMono-Regular, Consolas, Liberation Mono, Menlo, Courier, monospace"><span style="font-size: 12px; white-space: pre;"><br></span></font></div><div><font color="#6f42c1" face="SFMono-Regular, Consolas, Liberation Mono, Menlo, Courier, monospace"><span style="font-size: 12px; white-space: pre;">Best,</span></font></div><div><font color="#6f42c1" face="SFMono-Regular, Consolas, Liberation Mono, Menlo, Courier, monospace"><span style="font-size: 12px; white-space: pre;">Xiaoming<br></span></font><br><br>On Thursday, August 16, 2018 at 8:12:32 AM UTC-4, jgh wrote:<blockquote class="gmail_quote" style="margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;">Hi
<br>
<br>your problem is related to the ill-defined energy of a charge
<br>in a periodic system.
<br>Your energy 1 is calculated with a background charge to nuetralize
<br>the charge of your orbital. In energy 2, the isolated system,
<br>no such background charge is needed.
<br>
<br>If you want to get some idea how to attack this problem, I would
<br>suggest to read the vast literature on the calculation of
<br>charged defects in solids. Start with the recent work of Pasquarello.
<br>
<br>regards
<br>
<br>Juerg
<br>------------------------------<wbr>------------------------------<wbr>--
<br>Juerg Hutter                         Phone : ++41 44 635 4491
<br>Institut für Chemie C                FAX   : ++41 44 635 6838
<br>Universität Zürich                   E-mail: <a href="javascript:" target="_blank" gdf-obfuscated-mailto="8Qxcvp6_DgAJ" rel="nofollow" onmousedown="this.href='javascript:';return true;" onclick="this.href='javascript:';return true;">hut...@chem.uzh.ch</a>
<br>Winterthurerstrasse 190
<br>CH-8057 Zürich, Switzerland
<br>------------------------------<wbr>------------------------------<wbr>---
<br>
<br>-----<a href="javascript:" target="_blank" gdf-obfuscated-mailto="8Qxcvp6_DgAJ" rel="nofollow" onmousedown="this.href='javascript:';return true;" onclick="this.href='javascript:';return true;">cp...@googlegroups.com</a> wrote: -----
<br>To: "cp2k" <<a href="javascript:" target="_blank" gdf-obfuscated-mailto="8Qxcvp6_DgAJ" rel="nofollow" onmousedown="this.href='javascript:';return true;" onclick="this.href='javascript:';return true;">cp...@googlegroups.com</a>>
<br>From: "Xiaoming Wang" 
<br>Sent by: <a href="javascript:" target="_blank" gdf-obfuscated-mailto="8Qxcvp6_DgAJ" rel="nofollow" onmousedown="this.href='javascript:';return true;" onclick="this.href='javascript:';return true;">cp...@googlegroups.com</a>
<br>Date: 08/15/2018 10:05PM
<br>Subject: [CP2K:10631] electrostatic decoupling
<br>
<br>Hello,
<br>
<br>I'd like to decouple the the Coulomb interaction between the electron of one specific state, say HOMO, 
<br>and its periodic images, for a fully periodic DFT calculation. The interested charge density is localized.
<br>I have tried to use different poisson solvers, say MT or WAVELET, to achieve my goal. So first I extracted 
<br>the the charge density from mo_coeff. Then called the poisson solver.
<br>
<br>pw_poisson_solve(poisson_env, orb_rho_g%pw, ener1, v_gspace1%pw) 
<br>
<br>with poisson environment PERIODIC3D. Next I changed the poisson_env to MT0D, then called  poisson
<br>solver once more.
<br>
<br>pw_poisson_solve(poisson_env, orb_rho_g%pw, ener2, v_gspace2%pw)
<br>
<br>Finally, the decoupling energy is deltaE = ener1 - ener2. I thought deltaE should be a very small
<br>number, because the charge density of that state is quite localized and my unit cell is big enough for
<br>the MT solver. However, I got a very large deltaE 0.05 Ha. Also the value is negative, which means the 
<br>Hartree energy is higher for the decoupled case. I cannot understand this, because I think the image 
<br>interaction would increase the energy. So can anyone give some advice?
<br>
<br>Best,
<br>Xiaoming Wang  
<br>  -- 
<br> You received this message because you are subscribed to the Google Groups "cp2k" group.
<br> To unsubscribe from this group and stop receiving emails from it, send an email to <a href="javascript:" target="_blank" gdf-obfuscated-mailto="8Qxcvp6_DgAJ" rel="nofollow" onmousedown="this.href='javascript:';return true;" onclick="this.href='javascript:';return true;">cp2k+uns...@googlegroups.<wbr>com</a>.
<br> To post to this group, send email to <a href="javascript:" target="_blank" gdf-obfuscated-mailto="8Qxcvp6_DgAJ" rel="nofollow" onmousedown="this.href='javascript:';return true;" onclick="this.href='javascript:';return true;">cp...@googlegroups.com</a>.
<br> Visit this group at <a href="https://groups.google.com/group/cp2k" target="_blank" rel="nofollow" onmousedown="this.href='https://groups.google.com/group/cp2k';return true;" onclick="this.href='https://groups.google.com/group/cp2k';return true;">https://groups.google.com/<wbr>group/cp2k</a>.
<br> For more options, visit <a href="https://groups.google.com/d/optout" target="_blank" rel="nofollow" onmousedown="this.href='https://groups.google.com/d/optout';return true;" onclick="this.href='https://groups.google.com/d/optout';return true;">https://groups.google.com/d/<wbr>optout</a>.
<br> 
<br></blockquote></div></div>