<div dir="ltr">David-<div><br></div><div>What algorithm are you referring to? According to Matt, just running with the TOTAL...etc command will add the core electrons. Are you saying this works? Because a previous thread, linked above, describes this as not working unless you are using GAPW, not just GPW.</div><div><br></div><div>-Ada</div><div><br></div><div><br></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, May 1, 2018 at 9:33 AM, David T <span dir="ltr"><<a href="mailto:amazing...@gmail.com" target="_blank">amazing...@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">You are right Matt.<div>I did it for the 1st time in this article: <a href="https://pubs.acs.org/doi/abs/10.1021/jp901753p" target="_blank">https://pubs.acs.org/doi/abs/<wbr>10.1021/jp901753p</a></div><div><br></div><div>Sadly Henkelman and VASP persons have started using my Algorithm without citing it... but that is another story....</div><div><div class="h5"><div><br><br>On Tuesday, 17 April 2018 19:19:13 UTC+1, Matt W wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">I _think_ it should add the approximate core charge for GPW (i.e. a gaussian with charge +Z centred on the atom), which should be enough for the correct topology for AIM. <br><br>I'm not speaking from experience though. May well be wrong.<br><br>On Tuesday, April 17, 2018 at 7:08:09 PM UTC+1, Ada Sedova wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">I think that only works if you're using GAPW, though, am I right? Because if you are not calculating the core electrons they won't print? At least that's according to another thread I read on this forum...</div><div><br><div class="gmail_quote">On Tue, Apr 17, 2018 at 12:49 PM, Matt W <span dir="ltr"><<a rel="nofollow">matt...@gmail.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><a href="https://manual.cp2k.org/cp2k-5_1-branch/CP2K_INPUT/FORCE_EVAL/DFT/PRINT/TOT_DENSITY_CUBE.html" rel="nofollow" target="_blank">https://manual.cp2k.org/cp2k-5<wbr>_1-branch/CP2K_INPUT/FORCE_EVA<wbr>L/DFT/PRINT/TOT_DENSITY_CUBE.<wbr>html</a><div><br></div><div>I think.<br><br>On Tuesday, April 17, 2018 at 5:14:12 PM UTC+1, Ada Sedova wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi all-<div>There was a thread from 2016 about finding a way to add core electrons to a cp2k cube file so that Bader analysis can be performed with Henkelman's code, which takes cube files, but of the Gaussian format, which includes all electrons. There was no definitive solution posted, but a suggestion was to hack the Manz DDEC code to add core electrons and print out a new cube. The Manz code has gone through some changes and a brief look at it did not reveal a rewrite option. </div><div><br></div><div>I was wondering if there have been any updates on the ability to use Henkelman's with a cp2k cube file. The other option would be to create a VASP CHGCAR file from a cp2k cube file, but the core electrons still need to be added somehow.</div><div><br></div><div>Thanks!</div><div>AS</div></div></blockquote></div></div><span><font color="#888888">
<p></p>
-- <br>
You received this message because you are subscribed to a topic in the Google Groups "cp2k" group.<br>
To unsubscribe from this topic, visit <a href="https://groups.google.com/d/topic/cp2k/IVj1WAxCAYs/unsubscribe" rel="nofollow" target="_blank">https://groups.google.com/d/to<wbr>pic/cp2k/IVj1WAxCAYs/unsubscri<wbr>be</a>.<br>
To unsubscribe from this group and all its topics, send an email to <a rel="nofollow">cp2k+...@googlegroups.com</a>.<br>
To post to this group, send email to <a rel="nofollow">cp...@googlegroups.com</a>.<br>
Visit this group at <a href="https://groups.google.com/group/cp2k" rel="nofollow" target="_blank">https://groups.google.com/grou<wbr>p/cp2k</a>.<br>
For more options, visit <a href="https://groups.google.com/d/optout" rel="nofollow" target="_blank">https://groups.google.com/d/op<wbr>tout</a>.<br>
</font></span></blockquote></div><br></div>
</blockquote></div></blockquote></div></div></div></div><div class="HOEnZb"><div class="h5">
<p></p>
-- <br>
You received this message because you are subscribed to a topic in the Google Groups "cp2k" group.<br>
To unsubscribe from this topic, visit <a href="https://groups.google.com/d/topic/cp2k/IVj1WAxCAYs/unsubscribe" target="_blank">https://groups.google.com/d/<wbr>topic/cp2k/IVj1WAxCAYs/<wbr>unsubscribe</a>.<br>
To unsubscribe from this group and all its topics, send an email to <a href="mailto:cp2k+uns...@googlegroups.com" target="_blank">cp2k+unsubscribe@googlegroups.<wbr>com</a>.<br>
To post to this group, send email to <a href="mailto:cp...@googlegroups.com" target="_blank">cp...@googlegroups.com</a>.<br>
Visit this group at <a href="https://groups.google.com/group/cp2k" target="_blank">https://groups.google.com/<wbr>group/cp2k</a>.<br>
For more options, visit <a href="https://groups.google.com/d/optout" target="_blank">https://groups.google.com/d/<wbr>optout</a>.<br>
</div></div></blockquote></div><br></div>