<div dir="ltr">personally thinking, the constrained md is kind of biasing to the reaction coordinates, so I personally prefer running a 1000 ps unconstrained MD, to running the same length of constrained md. For some reactions with high free energy barrier, unconstrained MD cannot simulate the reaction. In this case, maybe I can try other methods.  <div><br>On Wednesday, July 6, 2016 at 12:05:25 PM UTC-4, Fangyong Yan wrote:<blockquote class="gmail_quote" style="margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir="ltr">Hi,<div><br></div><div>I have a question about the free energy calculation using the constrained MD. For the simplest case, such as constraining a inter-molecular distance between two atoms, i and j, In the constrain MD in the NVT ensemble, CP2K uses shake algorithm to update the position and velocity, where the constrain follows the holonomic constrain, </div><div><br></div><div>sigma = (ri - rj) ** 2 - dij ** 2, where dij is the constrain distance,</div><div>and the total force is equal to F_i + G_i, G_i is the constrained force and is equal to, lamda * the first derivative of simga versus r_i, thus, </div><div>G_i = -2 * lamda * r_i, (where these eq. borrows from the original shake paper, JEAN-PAUL RYCKAERT, GIOVANNI CICCOTTI, AND
HERMAN J. C. BERENDSEN, JOURNAL OF COMPUTATIONAL. PHYSICS 23, 321-341 (1977)).</div><div><br></div><div>In the free energy calculation, I think CP2K uses the eq. derived by Michiel Sprik and GIOVANNI CICCOTTI, Free energy from constrained molecular dynamics, J. Chem. Phys., Vol. 109, No. 18, 8 November 1998, where in this paper, the free energy uses a different constrain, </div><div>where constrain is equal to |ri - rj| - dij = 0, "| |" represents the absolute value, and in this case, the constrained force G_i = - lamda, (see eq. 13 in the paper). The free energy is equal to </div><div><br></div><div>dW / d Zeta' = < Z^(-1/2) * [ -lamda + kTG] > / < Z^(-1/2)></div><div><br></div><div>W is the free energy, Zeta is the constrained eq., in this case is equal to |ri - rj| - dij = 0, Zeta' represent different Zeta's; < > is the ensemble average, Z is a factor arises from the requirement that when Zeta is equal to zero for all times, the first derivative of Zeta (the velocity of this constrain) is also equal to zero for all times. (from E.A. CARTER, Giovanni CICCOTTI, James T. HYNES, Raymond KAPRAL, Chem. Phys. Lett.
156, 472 ~1989.); G is equal to </div><div>G = (1 / Z^2) * (1/m_i * 1/m_j) * the first derivative of Zeta versus r_i * the second derivative of Zeta versus r_i and r_j * the first derivative of Zeta versus r_j, </div><div>when Zeta = |r_i - r_j| - dij, the first derivative of Zeta versus r_i = the first derivative of Zeta versus r_j = 1, the second derivative of Zeta versus r_i and r_j = 0, thus, the free energy is equal to </div><div><br></div><div>dW / d Zeta' = < Z^(-1/2) * [ -lamda + kTG] > / < Z^(-1/2)> = < Z^(-1/2) * [ -lamda] > / < Z^(-1/2)>, and Z is a constant in this simple case, thus, <br></div><div>dW / d Zeta'  = <-lamda><br></div><div><br></div><div>Now my question is, since shake uses Zeta = (r_i - r_J) ** 2 - dij**2 = 0, in this case, G wont disappear, and the constrained force G_i = - 2 * lamda * r_i. Since CP2K does use SHAKE algorithm, how does CP2K do the free energy calculation, do CP2K uses Zeta = (r_i - r_j) ** 2 - dij**2 =0, or Zeta = |r_i - r_j| - dij = 0, since these two cases the lagrange multiplier is different. </div><div><br></div><div>Thanks for your patience for reading this, and I hope someone who can help me with this issue!</div><div><br></div><div>Fangyong</div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div><br></div><div> </div><div><br></div><div><br></div></div></blockquote></div></div>