<div dir="ltr">Dear Matt,<div><br></div><div>Replacing:</div><div><br></div><div>
<p class="p1"><span class="s1"> &KIND Fe</span></p>
<p class="p1"><span class="s1"> BASIS_SET DZVP-MOLOPT-SR-GTH</span></p>
<p class="p1"><span class="s1"> POTENTIAL GTH-PADE-q8</span></p>
<p class="p1"><span class="s1"> &END KIND</span></p>
<p class="p2"><span class="s1"> </span></p>
<p class="p1"><span class="s1"> &KIND S</span></p>
<p class="p1"><span class="s1"> BASIS_SET DZVP-MOLOPT-GTH</span></p>
<p class="p1"><span class="s1"> POTENTIAL GTH-PADE-q6</span></p>
<p class="p1"><span class="s1"> &END KIND</span></p></div><div><br></div><div>by</div><div><br></div><div>
<p class="p1"><span class="s1"> &KIND Fe</span></p>
<p class="p1"><span class="s1"> BASIS_SET DZVP-MOLOPT-SR-GTH</span></p>
<p class="p1"><span class="s1"> POTENTIAL GTH-BLYP-q16</span></p>
<p class="p1"><span class="s1"> &END KIND</span></p>
<p class="p2"><span class="s1"></span><br></p>
<p class="p1"><span class="s1"> &KIND S</span></p>
<p class="p1"><span class="s1"> BASIS_SET DZVP-MOLOPT-GTH</span></p>
<p class="p1"><span class="s1"> POTENTIAL GTH-BLYP-q6</span></p>
<p class="p1"><span class="s1"> &END KIND</span></p><p class="p1"><span class="s1"><br></span></p><p class="p1"><span class="s1">gives me very different energy. From the PADE PP, the energy is: -28.4161411776336 while the one from BLYP gives the energy: -129.19258676213. Even the energy of the reaction Fe + S --> FeS from the BLYP PP is unphysical (4500 kJ/mol). I did not change anything else in the input file. Surprisingly this is not the case with the sulfur. For sulfur, with PADE PP the energy is: -9.889958274622 while with BLYP PP it is: -9.28358433022577. For Fe, with PADE PP it is: -18.4228633044091 and with BLYP PP it is: -121.648598758824</span></p><p class="p1"><span class="s1"><br></span></p><p class="p1"><span class="s1">I wonder if it has something to do with the transition metals. Has anyone else experience similar problems. Will someone provide information on how to deal with transition metals in a QM calculation (non-periodic) in CP2K.</span></p><p class="p1"><span class="s1"><br></span></p><p class="p1"><span class="s1">Thanks,</span></p><p class="p1"><span class="s1">Megha</span></p></div><div><br>On Tuesday, September 6, 2016 at 6:15:53 PM UTC-4, Matt W wrote:<blockquote class="gmail_quote" style="margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir="ltr">Hi,<div><br></div><div>the MOLOPT basis set is designed to go with a 18 electron pseudo potential, so it might well give a bad result with an 8 electron one, as you use.</div><div><br></div><div>Also mixing pseudo potentials for with functionals that they weren't designed for is generally not a good idea. Whilst there aren't specific pseudos for B3LYP at the moment, it would be better to use BLYP ones than PADE.</div><div><br></div><div>So changing the Fe pseudo to GTH-BLYP-q16 and the S to GTH-BLYP-q6 and see how that affects things.</div><div><br></div><div>Matt</div><div><br><br>On Tuesday, September 6, 2016 at 10:17:25 PM UTC+1, Megha Anand wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Dear All,<div><br></div><div>Are there basis sets larger than DZVP-MOLOPT-SR-GTH available for iron. I am trying to get energy of the reaction: Fe(g) + S(g) --> FeS(g). While the experimental value is ~320 kJ/mol and I am getting 268 kJ/mol. I wonder if small size of the basis set has anything to do with it. I am beginner with CP2K and not sure what could be the source of the difference. Any insights please. This is how my input looks like:</div><div><br></div><div>
<p><span>&GLOBAL</span></p>
<p><span> PROJECT FeS_5</span></p>
<p><span> RUN_TYPE GEO_OPT</span></p>
<p><span> PRINT_LEVEL MEDIUM</span></p>
<p><span> WALLTIME 86400</span></p>
<p><span>&END GLOBAL</span></p><p><span><br></span></p>
<p><span>&FORCE_EVAL</span></p>
<p><span> METHOD Quickstep</span></p><p><span><br></span></p>
<p><span> &DFT</span></p>
<p><span> BASIS_SET_FILE_NAME /share/apps/cp2k/cp2k/tests/<wbr>QS/BASIS_MOLOPT</span></p>
<p><span> POTENTIAL_FILE_NAME /share/apps/cp2k/cp2k/tests/<wbr>QS/GTH_POTENTIALS</span></p>
<p><span> CHARGE 0</span></p>
<p><span> MULTIPLICITY 5</span></p>
<p><span> UKS T</span></p><p><span><br></span></p>
<p><span> &MGRID</span></p>
<p><span> CUTOFF 400</span></p>
<p><span> REL_CUTOFF 60</span></p>
<p><span> &END MGRID</span></p><p><span><br></span></p>
<p><span> &QS</span></p>
<p><span> METHOD GPW</span></p>
<p><span> EPS_DEFAULT 1.0E-12</span></p>
<p><span> &END QS</span></p><p><span><br></span></p>
<p><span> &SCF</span></p>
<p><span> MAX_SCF 500</span></p>
<p><span> &OUTER_SCF</span></p>
<p><span> EPS_SCF 1.0E-6</span></p>
<p><span> MAX_SCF 60</span></p>
<p><span> &END OUTER_SCF</span></p>
<p><span> &END SCF</span></p><p><span><br></span></p>
<p><span> &POISSON</span></p>
<p><span> PERIODIC NONE</span></p>
<p><span> PSOLVER WAVELET</span></p>
<p><span> &END POISSON</span></p><p><span><br></span></p>
<p><span> &XC</span></p>
<p><span> &XC_FUNCTIONAL</span></p>
<p><span> &LYP</span></p>
<p><span> SCALE_C 0.81</span></p>
<p><span> &END</span></p>
<p><span> &BECKE88</span></p>
<p><span> SCALE_X 0.72</span></p>
<p><span> &END</span></p>
<p><span> &VWN</span></p>
<p><span> FUNCTIONAL_TYPE VWN5</span></p>
<p><span> SCALE_C 0.19</span></p>
<p><span> &END</span></p>
<p><span> &END XC_FUNCTIONAL</span></p>
<p><span> &HF</span></p>
<p><span> &SCREENING</span></p>
<p><span> EPS_SCHWARZ 1.0E-10</span></p>
<p><span> &END</span></p>
<p><span> FRACTION 0.15</span></p>
<p><span> &END</span></p>
<p><span> &XC_GRID</span></p>
<p><span> XC_SMOOTH_RHO NN10</span></p>
<p><span> XC_DERIV SPLINE2_SMOOTH</span></p>
<p><span> &END XC_GRID</span></p>
<p><span> &END XC</span></p>
<p><span> &END DFT</span></p><p><span><br></span></p>
<p><span> &SUBSYS</span></p>
<p><span> &CELL</span></p>
<p><span> ABC 7.00 7.00 7.00</span></p>
<p><span> PERIODIC NONE</span></p>
<p><span> &END CELL</span></p>
<p><span> &COORD</span></p>
<p><span> Fe 0.0000 0.0000 0.0000</span></p>
<p><span> S 0.0000 0.0000 1.0600</span></p>
<p><span> &END COORD</span></p>
<p><span> &TOPOLOGY</span></p>
<p><span> &CENTER_COORDINATES</span></p>
<p><span> &END</span></p>
<p><span> &END</span></p><p><span><br></span></p>
<p><span> &KIND Fe</span></p>
<p><span> BASIS_SET DZVP-MOLOPT-SR-GTH</span></p>
<p><span> POTENTIAL GTH-PADE-q8</span></p>
<p><span> &END KIND</span></p>
<p><span> &KIND S</span></p>
<p><span> BASIS_SET DZVP-MOLOPT-GTH</span></p>
<p><span> POTENTIAL GTH-PADE-q6</span></p>
<p><span> &END KIND</span></p>
<p><span> &END SUBSYS</span></p>
<p><span>&END FORCE_EVAL</span></p></div><div><br></div><div><br></div><div><br></div><div><br></div>
<div><br>On Tuesday, February 10, 2015 at 5:16:32 AM UTC-5, Rizwan Nabi wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi<div>I want to run a job using lanthenide complexes for which i need GTH_BASIS_SET ,as i do not have the GTH_BASIS_SET for lanthenoid metals.</div><div>Would you please provide me the GTH_BASIS_SET for the said metals or atleast give me an idea as to how to generate GTH_BASIS_SET for the lanthenoid metals.</div><div>Looking forward for your response.</div><div>THANKS<br><br>On Monday, December 17, 2012 at 11:23:50 AM UTC+5:30, Lavinia wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Juerg,<br><br>Please suggest solutions to make B3LYP converge in a smaller number of steps/iteration (~15 for BLYP relative to >40 for B3LYP) and with CPU time/step/iteration comparable to BLYP (4.5s/step/iteration for BLYP relative to 5400s/step/iteration for B3LYP). B3LYP calculations start converging only when EPS_PGF_ORB is reduced to 1.0E-32 (as previously suggested in a CP2K thread). Below you will find the input for a B3LYP calculation that differs from a BLYP one only in the exchange-correlation functional and EPS_PGF_ORB. Minimal sample output is also provided for both BLYP and B3LYP.<br><br>Input:<br><br>@SET CURR_I 07<br><br>@SET REPLICA 001<br>@SET SEED 2000<br><br>&GLOBAL<br> PROGRAM_NAME CP2K<br> PROJECT_NAME xxx_${REPLICA}_${CURR_I}<br> RUN_TYPE MD<br> SEED ${SEED}<br> PREFERRED_FFT_LIBRARY FFTW<br> PRINT_LEVEL LOW<br> SAVE_MEM<br>&END GLOBAL<br><br>&FORCE_EVAL<br> METHOD QMMM<br> <br> &DFT<br> BASIS_SET_FILE_NAME ./BASIS_MOLOPT<br> POTENTIAL_FILE_NAME ./POTENTIAL<br> CHARGE 0<br> MULTIPLICITY 1<br> <br> &SCF<br> SCF_GUESS ATOMIC<br> EPS_SCF 1.0E-6<br> MAX_SCF 50<br> &OUTER_SCF<br> MAX_SCF 10<br> &END OUTER_SCF<br> &OT<br># My scheme<br> PRECONDITIONER FULL_SINGLE_INVERSE<br> MINIMIZER DIIS<br> N_DIIS 7<br> &END OT<br> &PRINT<br> &RESTART<br> &EACH<br> MD 20<br> &END EACH<br> &END RESTART<br> &RESTART_HISTORY OFF<br> &END RESTART_HISTORY<br> &END PRINT<br> &END SCF<br><br> &QS<br> METHOD GAPW<br># My scheme<br> EPS_DEFAULT 1.0E-12<br> EPS_PGF_ORB 1.0E-32<br> EPS_FILTER_MATRIX 0.0E+0<br> &END QS<br> &MGRID<br> COMMENSURATE<br> CUTOFF 300<br> &END MGRID<br> &POISSON<br> POISSON_SOLVER MULTIPOLE<br> PERIODIC NONE<br> &MULTIPOLE<br> RCUT 40<br> &END MULTIPOLE<br> &END POISSON<br> <br> &XC<br> #&XC_FUNCTIONAL BLYP<br> #&END XC_FUNCTIONAL<br> &XC_FUNCTIONAL<br> &LYP<br> SCALE_C 0.81<br> &END<br> &BECKE88<br> SCALE_X 0.72<br> &END<br> &VWN<br> FUNCTIONAL_TYPE VWN3<br> SCALE_C 0.19<br> &END<br> &XALPHA<br> SCALE_X 0.08<br> &END<br> &END XC_FUNCTIONAL<br> &HF<br> &SCREENING<br> EPS_SCHWARZ 1.0E-10<br> &END<br> &MEMORY<br> MAX_MEMORY 512<br> EPS_STORAGE_SCALING 1.0E-1<br> &END<br> FRACTION 0.20<br> &END<br> &XC_GRID<br> XC_SMOOTH_RHO NN10<br> XC_DERIV SPLINE2_SMOOTH<br> &END XC_GRID<br> &END XC<br> <br> &PRINT<br> &E_DENSITY_CUBE<br> &EACH<br> MD 20<br> &END EACH<br> &END E_DENSITY_CUBE<br> &END PRINT<br> &END DFT<br> <br> &MM<br> &FORCEFIELD<br> PARMTYPE CHM<br> PARM_FILE_NAME ./par_all27_prot_na_heme.prm<br> &SPLINE<br> RCUT_NB 12.0<br> &END SPLINE<br> &END FORCEFIELD<br> &POISSON<br> &EWALD<br> EWALD_TYPE SPME<br> ALPHA 0.35<br> GMAX 80 80 80<br> &END EWALD<br> &END POISSON<br> &END MM<br><br> &QMMM<br> USE_GEEP_LIB 7<br> E_COUPL GAUSS<br> <br> @INCLUDE run_${REPLICA}_cp2k.inp<br> <br> @INCLUDE mm_kinds<br> <br> &WALLS<br> TYPE REFLECTIVE<br> WALL_SKIN 1.5 1.5 1.5<br> &END WALLS<br> <br> &PRINT<br> &PROGRAM_RUN_INFO SILENT<br> &END PROGRAM_RUN_INFO<br> &PERIODIC_INFO SILENT<br> &END PERIODIC_INFO<br> &QMMM_LINK_INFO SILENT<br> &END QMMM_LINK_INFO<br> &END PRINT<br> &END QMMM<br><br> &SUBSYS<br> &CELL<br> ABC 70.125 50.266 58.796<br> PERIODIC XYZ<br> &END CELL<br> &TOPOLOGY<br> CONNECTIVITY UPSF<br> CONN_FILE_NAME ./xxx.xplor_psf<br> COORDINATE PDB<br> COORD_FILE_NAME ./run_${REPLICA}_cp2k.pdb<br> PARA_RES T<br> &END TOPOLOGY<br><br> ##############################<wbr>########## Basis sets and pseudopotentials<br> &KIND H<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q1<br> POTENTIAL GTH-BLYP-q1<br> &END KIND<br> &KIND C<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q4<br> POTENTIAL GTH-BLYP-q4<br> &END KIND<br> &KIND N<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q5<br> POTENTIAL GTH-BLYP-q5<br> &END KIND<br> &KIND O<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q6<br> POTENTIAL GTH-BLYP-q6<br> &END KIND<br> &KIND Fe<br> BASIS_SET DZVP-MOLOPT-SR-GTH-q16<br> POTENTIAL GTH-BLYP-q16<br> &END KIND<br> &END SUBSYS<br>&END FORCE_EVAL<br><br>&MOTION<br> &MD<br> ENSEMBLE LANGEVIN<br> STEPS 100<br> TIMESTEP 0.50<br> TEMPERATURE 298.15<br> &LANGEVIN<br> GAMMA 0.004<br> &END<br> &PRINT<br> &ENERGY<br> &EACH<br> MD 20<br> &END EACH<br> &END ENERGY<br> &END PRINT<br> &END MD<br> <br> &PRINT<br> &RESTART<br> &EACH <br> MD 20<br> &END EACH<br> &END RESTART<br> &RESTART_HISTORY OFF<br> &END RESTART_HISTORY<br><br> &TRAJECTORY SILENT<br> FORMAT DCD<br> &EACH<br> MD 20<br> &END EACH<br> &END TRAJECTORY<br> &VELOCITIES OFF<br> &END VELOCITIES<br> &FORCES OFF<br> &END FORCES<br> &END PRINT<br>&END MOTION<br><br>++++++++++++++++++++++++++++++<wbr>++++++++++++++++++++++++++++++<br><br>BLYP output:<br> Decoupling Energy: <wbr> 0.0120504335<br> Adding QM/MM electrostatic potential to the Kohn-Sham potential.<br> 10 OT DIIS 0.15E+00 4.4 0.00000092 -512.9974428666 -1.08E-07<br> *** SCF run converged in 10 steps *** <br><br>++++++++++++++++++++++++++++++<wbr>++++++++++++++++++++++++++++++<br><br>B3LYP output:<br>Decoupling Energy: <wbr> 0.0112659720<br> Adding QM/MM electrostatic potential to the Kohn-Sham potential.<br> 41 OT DIIS 0.15E+00 5396.1 0.00039599 -514.1666899734 -1.87E-02<br><br>Sincerely,<br>Lavinia<br><br>On Tuesday, August 28, 2012 3:31:11 AM UTC-4, jgh wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex">Hi
<br>
<br>there is currently no Fe B3LYP pseudopotential. Most people
<br>would use the corresponding BLYP PP in such a case (and also
<br>for all other elements in the calculation).
<br>The best choice for a basis set is the MOLOPT series. You
<br>can find them in BASIS_MOLOPT in tests/QS.
<br>
<br>Finally, you could generate your own (B3LYP) pseudos and
<br>basis sets using the atomic code that is part of CP2K.
<br>Some examples can be found in tests/ATOM.
<br>
<br>regards
<br>
<br>Juerg
<br>
<br>------------------------------<wbr>------------------------------<wbr>--
<br>Juerg Hutter Phone : ++41 44 635 4491
<br>Physical Chemistry Institute FAX : ++41 44 635 6838
<br>University of Zurich E-mail: <a>hut...@pci.uzh.ch</a>
<br>Winterthurerstrasse 190
<br>CH-8057 Zurich, Switzerland
<br>------------------------------<wbr>------------------------------<wbr>---
<br>
<br>-----<a>cp...@googlegroups.com</a> wrote: -----
<br>To: <a>cp...@googlegroups.com</a>
<br>From: Lavinia
<br>Sent by: <a>cp...@googlegroups.com</a>
<br>Date: 08/28/2012 05:18AM
<br>Subject: [CP2K:3995] GTH BLYP and B3LYP basis sets and pseudopotentials for Fe
<br>
<br> Dear GTH,
<br>
<br> I am preparing QM(DFT)/MM calculations for a chemical reaction catalyzed by an iron enzyme. I am interested in running the simulations both at BLYP and hybrid B3LYP level. While there is a Fe GTH optimized pseudopotential generated and available for the BLYP calculations in the CP2K database, there is no Fe basis set in the GTH_BASIS_SETS. Could you provide one? Can it be generated with the new ATOM BASIS_OPTIMIZATION codebase? Would you please address the same issue for B3LYP (BASIS/PSEUDOPOTENTIAL_<wbr>OPTIMIZATION availability and accuracy)?
<br>
<br> Thank you,
<br> LC
<br>
<br> --
<br> You received this message because you are subscribed to the Google Groups "cp2k" group.
<br> To view this discussion on the web visit <a href="https://groups.google.com/d/msg/cp2k/-/uXrQisPvBLEJ" rel="nofollow" target="_blank" onmousedown="this.href='https://groups.google.com/d/msg/cp2k/-/uXrQisPvBLEJ';return true;" onclick="this.href='https://groups.google.com/d/msg/cp2k/-/uXrQisPvBLEJ';return true;">https://groups.google.com/d/<wbr>msg/cp2k/-/uXrQisPvBLEJ</a>.
<br> To post to this group, send email to <a>cp...@googlegroups.com</a>.
<br> To unsubscribe from this group, send email to <a>cp2k+...@googlegroups.com</a>.
<br> For more options, visit this group at <a href="http://groups.google.com/group/cp2k?hl=en" rel="nofollow" target="_blank" onmousedown="this.href='http://groups.google.com/group/cp2k?hl\x3den';return true;" onclick="this.href='http://groups.google.com/group/cp2k?hl\x3den';return true;">http://groups.google.com/<wbr>group/cp2k?hl=en</a>.
<br> </blockquote></blockquote></div></div></blockquote></div></div></blockquote></div></div></blockquote></div></div>