<div dir="ltr">Hi,<div><br></div><div>the MOLOPT basis set is designed to go with a 18 electron pseudo potential, so it might well give a bad result with an 8 electron one, as you use.</div><div><br></div><div>Also mixing pseudo potentials for with functionals that they weren't designed for is generally not a good idea. Whilst there aren't specific pseudos for B3LYP at the moment, it would be better to use BLYP ones than PADE.</div><div><br></div><div>So changing the Fe pseudo to GTH-BLYP-q16 and the S to GTH-BLYP-q6 and see how that affects things.</div><div><br></div><div>Matt</div><div><br><br>On Tuesday, September 6, 2016 at 10:17:25 PM UTC+1, Megha Anand wrote:<blockquote class="gmail_quote" style="margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir="ltr">Dear All,<div><br></div><div>Are there basis sets larger than DZVP-MOLOPT-SR-GTH available for iron. I am trying to get energy of the reaction: Fe(g) + S(g) --> FeS(g). While the experimental value is ~320 kJ/mol and I am getting 268 kJ/mol. I wonder if small size of the basis set has anything to do with it. I am beginner with CP2K and not sure what could be the source of the difference. Any insights please. This is how my input looks like:</div><div><br></div><div>







<p><span>&GLOBAL</span></p>
<p><span>  PROJECT FeS_5</span></p>
<p><span>  RUN_TYPE GEO_OPT</span></p>
<p><span>  PRINT_LEVEL MEDIUM</span></p>
<p><span>  WALLTIME 86400</span></p>
<p><span>&END GLOBAL</span></p><p><span><br></span></p>
<p><span>&FORCE_EVAL</span></p>
<p><span>  METHOD Quickstep</span></p><p><span><br></span></p>
<p><span>  &DFT</span></p>
<p><span>    BASIS_SET_FILE_NAME /share/apps/cp2k/cp2k/tests/<wbr>QS/BASIS_MOLOPT</span></p>
<p><span>    POTENTIAL_FILE_NAME /share/apps/cp2k/cp2k/tests/<wbr>QS/GTH_POTENTIALS</span></p>
<p><span>    CHARGE 0</span></p>
<p><span>    MULTIPLICITY 5</span></p>
<p><span>    UKS T</span></p><p><span><br></span></p>
<p><span>    &MGRID</span></p>
<p><span>      CUTOFF 400</span></p>
<p><span>      REL_CUTOFF 60</span></p>
<p><span>    &END MGRID</span></p><p><span><br></span></p>
<p><span>    &QS</span></p>
<p><span>      METHOD GPW</span></p>
<p><span>      EPS_DEFAULT 1.0E-12</span></p>
<p><span>    &END QS</span></p><p><span><br></span></p>
<p><span>    &SCF</span></p>
<p><span>      MAX_SCF 500</span></p>
<p><span>      &OUTER_SCF</span></p>
<p><span>        EPS_SCF 1.0E-6</span></p>
<p><span>        MAX_SCF 60</span></p>
<p><span>      &END OUTER_SCF</span></p>
<p><span>    &END SCF</span></p><p><span><br></span></p>
<p><span>    &POISSON</span></p>
<p><span>      PERIODIC NONE</span></p>
<p><span>      PSOLVER WAVELET</span></p>
<p><span>    &END POISSON</span></p><p><span><br></span></p>
<p><span>    &XC</span></p>
<p><span>      &XC_FUNCTIONAL</span></p>
<p><span>       &LYP</span></p>
<p><span>         SCALE_C 0.81</span></p>
<p><span>       &END</span></p>
<p><span>       &BECKE88</span></p>
<p><span>         SCALE_X 0.72</span></p>
<p><span>       &END</span></p>
<p><span>       &VWN</span></p>
<p><span>         FUNCTIONAL_TYPE VWN5</span></p>
<p><span>         SCALE_C 0.19</span></p>
<p><span>       &END</span></p>
<p><span>      &END XC_FUNCTIONAL</span></p>
<p><span>      &HF</span></p>
<p><span>        &SCREENING</span></p>
<p><span>          EPS_SCHWARZ 1.0E-10</span></p>
<p><span>        &END</span></p>
<p><span>        FRACTION 0.15</span></p>
<p><span>      &END</span></p>
<p><span>      &XC_GRID</span></p>
<p><span>        XC_SMOOTH_RHO NN10</span></p>
<p><span>        XC_DERIV SPLINE2_SMOOTH</span></p>
<p><span>      &END XC_GRID</span></p>
<p><span>    &END XC</span></p>
<p><span>  &END DFT</span></p><p><span><br></span></p>
<p><span>  &SUBSYS</span></p>
<p><span>    &CELL</span></p>
<p><span>      ABC 7.00 7.00 7.00</span></p>
<p><span>      PERIODIC NONE</span></p>
<p><span>    &END CELL</span></p>
<p><span>    &COORD</span></p>
<p><span>      Fe    0.0000    0.0000    0.0000</span></p>
<p><span>      S     0.0000    0.0000    1.0600</span></p>
<p><span>    &END COORD</span></p>
<p><span>    &TOPOLOGY</span></p>
<p><span>      &CENTER_COORDINATES</span></p>
<p><span>      &END</span></p>
<p><span>    &END</span></p><p><span><br></span></p>
<p><span>    &KIND Fe</span></p>
<p><span>      BASIS_SET DZVP-MOLOPT-SR-GTH</span></p>
<p><span>      POTENTIAL GTH-PADE-q8</span></p>
<p><span>    &END KIND</span></p>
<p><span>    &KIND S</span></p>
<p><span>      BASIS_SET DZVP-MOLOPT-GTH</span></p>
<p><span>      POTENTIAL GTH-PADE-q6</span></p>
<p><span>    &END KIND</span></p>
<p><span>  &END SUBSYS</span></p>
<p><span>&END FORCE_EVAL</span></p></div><div><br></div><div><br></div><div><br></div><div><br></div>







<div><br>On Tuesday, February 10, 2015 at 5:16:32 AM UTC-5, Rizwan Nabi wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr">Hi<div>I want to run a job using lanthenide complexes for which i need GTH_BASIS_SET ,as i do not have the GTH_BASIS_SET for lanthenoid metals.</div><div>Would you  please provide me the GTH_BASIS_SET for the said metals or atleast give me an idea as to how to generate GTH_BASIS_SET for the lanthenoid metals.</div><div>Looking forward for your response.</div><div>THANKS<br><br>On Monday, December 17, 2012 at 11:23:50 AM UTC+5:30, Lavinia wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Juerg,<br><br>Please suggest solutions to make B3LYP converge in a smaller number of steps/iteration (~15 for BLYP relative to >40 for B3LYP) and with CPU time/step/iteration comparable to BLYP (4.5s/step/iteration for BLYP relative to 5400s/step/iteration for B3LYP). B3LYP calculations start converging only when EPS_PGF_ORB is reduced to 1.0E-32 (as previously suggested in a CP2K thread). Below you will find the input for a B3LYP calculation that differs from a BLYP one only in the exchange-correlation functional and EPS_PGF_ORB. Minimal sample output is also provided for both BLYP and B3LYP.<br><br>Input:<br><br>@SET CURR_I  07<br><br>@SET REPLICA  001<br>@SET SEED     2000<br><br>&GLOBAL<br>  PROGRAM_NAME                 CP2K<br>  PROJECT_NAME                 xxx_${REPLICA}_${CURR_I}<br>  RUN_TYPE                     MD<br>  SEED                         ${SEED}<br>  PREFERRED_FFT_LIBRARY        FFTW<br>  PRINT_LEVEL                  LOW<br>  SAVE_MEM<br>&END GLOBAL<br><br>&FORCE_EVAL<br>  METHOD QMMM<br>  <br>  &DFT<br>    BASIS_SET_FILE_NAME        ./BASIS_MOLOPT<br>    POTENTIAL_FILE_NAME        ./POTENTIAL<br>    CHARGE                     0<br>    MULTIPLICITY               1<br>   <br>    &SCF<br>      SCF_GUESS                ATOMIC<br>      EPS_SCF                  1.0E-6<br>      MAX_SCF                  50<br>      &OUTER_SCF<br>    MAX_SCF                10<br>      &END OUTER_SCF<br>      &OT<br># My scheme<br>        PRECONDITIONER         FULL_SINGLE_INVERSE<br>        MINIMIZER              DIIS<br>        N_DIIS                 7<br>      &END OT<br>      &PRINT<br>    &RESTART<br>      &EACH<br>        MD                 20<br>      &END EACH<br>    &END RESTART<br>    &RESTART_HISTORY       OFF<br>    &END RESTART_HISTORY<br>      &END PRINT<br>    &END SCF<br><br>    &QS<br>      METHOD                   GAPW<br># My scheme<br>      EPS_DEFAULT              1.0E-12<br>      EPS_PGF_ORB              1.0E-32<br>      EPS_FILTER_MATRIX        0.0E+0<br>    &END QS<br>    &MGRID<br>      COMMENSURATE<br>      CUTOFF                   300<br>    &END MGRID<br>    &POISSON<br>      POISSON_SOLVER           MULTIPOLE<br>      PERIODIC                 NONE<br>      &MULTIPOLE<br>         RCUT                  40<br>      &END MULTIPOLE<br>    &END POISSON<br>    <br>    &XC<br>      #&XC_FUNCTIONAL           BLYP<br>      #&END XC_FUNCTIONAL<br>      &XC_FUNCTIONAL<br>       &LYP<br>         SCALE_C 0.81<br>       &END<br>       &BECKE88<br>         SCALE_X 0.72<br>       &END<br>       &VWN<br>         FUNCTIONAL_TYPE VWN3<br>         SCALE_C 0.19<br>       &END<br>       &XALPHA<br>         SCALE_X 0.08<br>       &END<br>      &END XC_FUNCTIONAL<br>      &HF<br>        &SCREENING<br>          EPS_SCHWARZ 1.0E-10<br>        &END<br>        &MEMORY<br>          MAX_MEMORY  512<br>          EPS_STORAGE_SCALING 1.0E-1<br>        &END<br>        FRACTION 0.20<br>      &END<br>      &XC_GRID<br>      XC_SMOOTH_RHO          NN10<br>      XC_DERIV               SPLINE2_SMOOTH<br>      &END XC_GRID<br>    &END XC<br>    <br>    &PRINT<br>      &E_DENSITY_CUBE<br>    &EACH<br>      MD                   20<br>    &END EACH<br>      &END E_DENSITY_CUBE<br>    &END PRINT<br>  &END DFT<br>  <br>  &MM<br>    &FORCEFIELD<br>      PARMTYPE                 CHM<br>      PARM_FILE_NAME           ./par_all27_prot_na_heme.prm<br>      &SPLINE<br>      RCUT_NB                12.0<br>      &END SPLINE<br>    &END FORCEFIELD<br>    &POISSON<br>      &EWALD<br>        EWALD_TYPE             SPME<br>        ALPHA                  0.35<br>        GMAX                   80 80 80<br>      &END EWALD<br>    &END POISSON<br>  &END MM<br><br>  &QMMM<br>    USE_GEEP_LIB               7<br>    E_COUPL                    GAUSS<br>    <br>    @INCLUDE run_${REPLICA}_cp2k.inp<br>    <br>    @INCLUDE mm_kinds<br>    <br>    &WALLS<br>      TYPE                     REFLECTIVE<br>      WALL_SKIN                1.5 1.5 1.5<br>    &END WALLS<br>    <br>    &PRINT<br>      &PROGRAM_RUN_INFO        SILENT<br>      &END PROGRAM_RUN_INFO<br>      &PERIODIC_INFO           SILENT<br>      &END PERIODIC_INFO<br>      &QMMM_LINK_INFO          SILENT<br>      &END QMMM_LINK_INFO<br>    &END PRINT<br>  &END QMMM<br><br>  &SUBSYS<br>    &CELL<br>      ABC                      70.125 50.266 58.796<br>      PERIODIC                 XYZ<br>    &END CELL<br>    &TOPOLOGY<br>      CONNECTIVITY             UPSF<br>      CONN_FILE_NAME           ./xxx.xplor_psf<br>      COORDINATE               PDB<br>      COORD_FILE_NAME          ./run_${REPLICA}_cp2k.pdb<br>      PARA_RES                 T<br>    &END TOPOLOGY<br><br>    ##############################<wbr>##########  Basis sets and pseudopotentials<br>    &KIND H<br>      BASIS_SET DZVP-MOLOPT-SR-GTH-q1<br>      POTENTIAL GTH-BLYP-q1<br>    &END KIND<br>    &KIND C<br>      BASIS_SET DZVP-MOLOPT-SR-GTH-q4<br>      POTENTIAL GTH-BLYP-q4<br>    &END KIND<br>    &KIND N<br>      BASIS_SET DZVP-MOLOPT-SR-GTH-q5<br>      POTENTIAL GTH-BLYP-q5<br>    &END KIND<br>    &KIND O<br>      BASIS_SET DZVP-MOLOPT-SR-GTH-q6<br>      POTENTIAL GTH-BLYP-q6<br>    &END KIND<br>    &KIND Fe<br>      BASIS_SET DZVP-MOLOPT-SR-GTH-q16<br>      POTENTIAL GTH-BLYP-q16<br>    &END KIND<br>  &END SUBSYS<br>&END FORCE_EVAL<br><br>&MOTION<br>  &MD<br>    ENSEMBLE                   LANGEVIN<br>    STEPS                      100<br>    TIMESTEP                   0.50<br>    TEMPERATURE                298.15<br>    &LANGEVIN<br>      GAMMA 0.004<br>    &END<br>    &PRINT<br>      &ENERGY<br>        &EACH<br>          MD                   20<br>        &END EACH<br>      &END ENERGY<br>    &END PRINT<br>  &END MD<br>  <br>  &PRINT<br>    &RESTART<br>      &EACH                    <br>        MD                     20<br>      &END EACH<br>    &END RESTART<br>    &RESTART_HISTORY           OFF<br>    &END RESTART_HISTORY<br><br>    &TRAJECTORY                SILENT<br>      FORMAT                   DCD<br>      &EACH<br>        MD                     20<br>      &END EACH<br>    &END TRAJECTORY<br>    &VELOCITIES                OFF<br>    &END VELOCITIES<br>    &FORCES                    OFF<br>    &END FORCES<br>  &END PRINT<br>&END MOTION<br><br>++++++++++++++++++++++++++++++<wbr>++++++++++++++++++++++++++++++<br><br>BLYP output:<br> Decoupling Energy:                       <wbr>                        0.0120504335<br>  Adding QM/MM electrostatic potential to the Kohn-Sham potential.<br>    10 OT DIIS     0.15E+00    4.4     0.00000092      -512.9974428666 -1.08E-07<br> *** SCF run converged in    10 steps *** <br><br>++++++++++++++++++++++++++++++<wbr>++++++++++++++++++++++++++++++<br><br>B3LYP output:<br>Decoupling Energy:                       <wbr>                        0.0112659720<br>  Adding QM/MM electrostatic potential to the Kohn-Sham potential.<br>    41 OT DIIS     0.15E+00 5396.1     0.00039599      -514.1666899734 -1.87E-02<br><br>Sincerely,<br>Lavinia<br><br>On Tuesday, August 28, 2012 3:31:11 AM UTC-4, jgh wrote:<blockquote class="gmail_quote" style="margin:0;margin-left:0.8ex;border-left:1px #ccc solid;padding-left:1ex">Hi
<br>
<br>there is currently no Fe B3LYP pseudopotential. Most people 
<br>would use the corresponding BLYP PP in such a case (and also
<br>for all other elements in the calculation).
<br>The best choice for a basis set is the MOLOPT series. You
<br>can find them in BASIS_MOLOPT in tests/QS.
<br>
<br>Finally, you could generate your own (B3LYP) pseudos and 
<br>basis sets using the atomic code that is part of CP2K.
<br>Some examples can be found in tests/ATOM.
<br>
<br>regards
<br>
<br>Juerg 
<br>
<br>------------------------------<wbr>------------------------------<wbr>--
<br>Juerg Hutter                         Phone : ++41 44 635 4491
<br>Physical Chemistry Institute   FAX   : ++41 44 635 6838
<br>University of Zurich               E-mail:  <a>hut...@pci.uzh.ch</a>
<br>Winterthurerstrasse 190
<br>CH-8057 Zurich, Switzerland
<br>------------------------------<wbr>------------------------------<wbr>---
<br>
<br>-----<a>cp...@googlegroups.com</a> wrote: -----
<br>To: <a>cp...@googlegroups.com</a>
<br>From: Lavinia 
<br>Sent by: <a>cp...@googlegroups.com</a>
<br>Date: 08/28/2012 05:18AM
<br>Subject: [CP2K:3995] GTH BLYP and B3LYP basis sets and pseudopotentials for Fe
<br>
<br>                  Dear GTH,
<br>   
<br>  I am preparing QM(DFT)/MM calculations for a chemical reaction catalyzed by an iron enzyme. I am interested in running the simulations both at BLYP and hybrid B3LYP level. While there is a Fe GTH optimized pseudopotential generated and available for the BLYP calculations in the CP2K database, there is no Fe basis set in the GTH_BASIS_SETS. Could you provide one? Can it be generated with the new ATOM BASIS_OPTIMIZATION codebase? Would you please address the same issue for B3LYP (BASIS/PSEUDOPOTENTIAL_<wbr>OPTIMIZATION availability and accuracy)? 
<br>   
<br>  Thank you,
<br>  LC
<br>      
<br>  -- 
<br> You received this message because you are subscribed to the Google Groups "cp2k" group.
<br> To view this discussion on the web visit <a href="https://groups.google.com/d/msg/cp2k/-/uXrQisPvBLEJ" rel="nofollow" target="_blank" onmousedown="this.href='https://groups.google.com/d/msg/cp2k/-/uXrQisPvBLEJ';return true;" onclick="this.href='https://groups.google.com/d/msg/cp2k/-/uXrQisPvBLEJ';return true;">https://groups.google.com/d/<wbr>msg/cp2k/-/uXrQisPvBLEJ</a>.
<br>  To post to this group, send email to <a>cp...@googlegroups.com</a>.
<br> To unsubscribe from this group, send email to <a>cp2k+...@googlegroups.com</a>.
<br>  For more options, visit this group at <a href="http://groups.google.com/group/cp2k?hl=en" rel="nofollow" target="_blank" onmousedown="this.href='http://groups.google.com/group/cp2k?hl\x3den';return true;" onclick="this.href='http://groups.google.com/group/cp2k?hl\x3den';return true;">http://groups.google.com/<wbr>group/cp2k?hl=en</a>.
<br>   </blockquote></blockquote></div></div></blockquote></div></div></blockquote></div></div>