<div dir="ltr">Hi,<br><br>you can try the following settings based on your input<br><br>  &SCF<br>   ADDED_MOS 3<br>   &SMEAR<br>    #     LIST 1-3 1/3<br>    METHOD ENERGY_WINDOW<br>    WINDOW_SIZE 0.1<br>    FIXED_MAGNETIC_MOMENT -1<br>   &END SMEAR<br>   EPS_SCF 2.0E-5<br>  &END SCF<br><br>which should result in an almost degenerate 1/3 occupation for that specific case of an oxygen atom. The degeneracy will improve for a setup with a really isolated oxygen atom, e.g.by using a larger cubic cell (> (10A)^3). In your (cell) setup the oxygen atom is still interacting with its images and its environment is not isotropic.<br><br>Matthias<br><br><br>On Thursday, 4 August 2016 14:46:38 UTC+2, Michael Trumm wrote:<blockquote class="gmail_quote" style="margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir="ltr">Ahoi,<br><br>i am trying to perform some atomistic calculations using fractional occupation numbers. (in this example it would be the neutral oxygen atom)<br>after i initialized them via &SMEAR the occupation looks kind of ok, but during the run cp2k chooses one of the tripletts.<br>hence my question. is there any way to fix the fractional occupation during the whole run to get a fractional triplett with the<br>beta p-orbitals occupied p_x 1/3 p_y 1/3 and p_z 1/3 ? <br><br>thanks for any help,<br>Michael.<br><br>OUTPUT:<br><br> ALPHA MO EIGENVALUES AND MO OCCUPATION NUMBERS AFTER SCF STEP 20<br><br># MO index         MO eigenvalue [a.u.]           MO occupation<br>        1                    -0.917069                1.000000<br>        2                    -0.394950                1.000000<br>        3                    -0.394539                1.000000<br>        4                    -0.312729                1.000000<br>        5                     0.468611                0.000000<br>        6                     0.493158                0.000000<br># Sum                                    <wbr>              4.000000<br><br> Fermi energy:               -0.241121<br><br> HOMO-LUMO gap:               0.781340 = 21.26 eV<br><br><br><br> BETA MO EIGENVALUES AND MO OCCUPATION NUMBERS AFTER SCF STEP 20<br><br># MO index         MO eigenvalue [a.u.]           MO occupation<br>        1                    -0.778066                1.000000<br>        2                    -0.268824                1.000000<br>        3                    -0.213094                0.000000<br>        4                    -0.211852                0.000000<br># Sum                                   <wbr>               2.000000<br><br><br><br>INPUT:<br><br>&GLOBAL<br> PROJECT test<br> RUN_TYPE ENERGY<br>&END GLOBAL<br><br>&FORCE_EVAL<br> METHOD QS<br> &DFT<br>  LSD<br>  MULTIPLICITY 3<br>  &PRINT<br>    &MO<br>      OCCUPATION_NUMBERS<br>    &END MO<br>  &END PRINT<br>  BASIS_SET_FILE_NAME BASIS_MOLOPT<br>  POTENTIAL_FILE_NAME GTH_POTENTIALS<br>  CHARGE 0<br>  &SCF<br>   ADDED_MOS 2<br>   &SMEAR<br>     LIST 1-3 1/3<br>   &END SMEAR<br>   EPS_SCF 2.0E-5<br>  &END SCF<br>  &XC<br>   &XC_FUNCTIONAL PBE<br>   &END XC_FUNCTIONAL<br>  &END XC<br> &END DFT<br> &SUBSYS<br>  &CELL<br>    ABC 5.189 8.953 20.129<br>    ALPHA_BETA_GAMMA 90 101.11 90<br>    PERIODIC XYZ<br>  &END CELL<br>  &KIND O <br>    BASIS_SET DZVP-MOLOPT-GTH<br>    POTENTIAL GTH-PBE-q6<br>  &END KIND<br>  &COORD<br> O       -0.9968591421       2.9869391388       4.8752526707<br>  &END COORD<br> &END SUBSYS<br>&END FORCE_EVAL<br><br></div></blockquote></div>