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Electronic and nuclear quantum effects on the ice XI/ice Ih phase transition
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We study the isotope effect on the temperature of the proton order/disorder phase transition between ice XI and
ice Ih, using the quasiharmonic approximation combined with ab initio density functional theory calculations.
We show that this method is accurate enough to obtain a phase-transition temperature difference between light
ice (H2O) and heavy ice (D2O) of 6 K as compared to the experimental value of 4 K. More importantly, we are
able to explain the origin of the isotope effect on the much-debated large temperature difference observed in
the phase transition. The source of the difference is directly linked to the physics behind the anomalous isotope
effect on the volume of hexagonal ice that was recently explained in Pamuk et al. [Phys. Rev. Lett. 108, 193003
(2012)]. These results indicate that the same physics might be behind the isotope effects in transition temperatures
between other ice phases.
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I. INTRODUCTION

The polymorphism of ice is revealed by its rich phase
diagram [1,2]. The availability of different proton configu-
rations that satisfy Bernal-Fowler “ice rules” [3] adds another
dimension to this phase diagram, given that the same crys-
talline structure could exist in proton-ordered and -disordered
forms. This leads to additional phases, separated by their
corresponding order/disorder phase transitions, as in the case
of ice XI/ice Ih, ice IX/ice III, and ice VIII/ice VII [2].

In this paper we focus on the phase transition between
proton-ordered (ice XI) and proton-disordered (ice Ih) hexag-
onal ice. This phase transition has been the subject of a large
number of experimental [4–8] and theoretical studies [9–21].
However, open questions remain about the mechanisms behind
the phase transition and the importance of nuclear quantum
effects in the temperature of the transition [22].

Experimentally, it is difficult to observe the phase transition
from ice Ih to ice XI. A glass transition occurs at around
100 K–110 K [7,8], diminishing the proton mobility and
locking protons in their disordered positions, before they
orient to form the proton-ordered ice XI structure. This is
overcome by catalyzing ice Ih by KOH [4–6], which allows the
lattice parameters of both proton-ordered ice XI [23–28] and
disordered ice Ih [26,29,30] to be experimentally measured.
The order/disorder phase transition is achieved at 72 K for
light ice [4] and 76 K for heavy ice [6]. Although the
isotope effect on the phase-transition temperature is measured
to be 4 K, a theoretical explanation for this difference is
still missing. References [31,32] associated the origin of the
isotope effect on the transition temperature to the difference in
vibrational energies between the two phases, estimating a ∼27
K isotope effect on the transition temperature, while Ref. [6]
sought the explanation in the difference in reorientation of
the dipole moments of heavy and light ices and predicted a
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much smaller ∼1 K isotope effect. However, in both of these
studies they assume no isotope effect on the volume of the
two ices and they also did not take into account the competing
anharmonicities between the intramolecular covalent bonds
and the intermolecular hydrogen bonds. In this work, we
reexamine the issue taking into account these two additional
effects, extending a previous work on the anomalies in the
isotope effect on the volume of ice [33].

A large literature is devoted to the study of the or-
der/disorder phase transition in hexagonal ice. Two main
questions are discussed: (i) the ordering nature in the low-
temperature phase and (ii) theory and simulation predictions
for the phase-transition temperature. Experiments such as neu-
tron diffraction [26–28], as well as measurements performed
under an electric field [25], indicate that the ordered phase has
ferroelectric order. However, among theory and simulation
works there is a large dispersion of results and a lack of
agreement [9–21]. The predicted low-T stable phase depends
strongly on the choice of boundary conditions, electrostatic
multipoles, and treatment of long-range interactions [9–15].
In addition, semiempirical force-field models fitted to re-
produce experimental data are not accurate enough to dis-
tinguish small energy differences between different proton
orderings.

According to Ref. [9], the TIP4P-FQ [34] model predicts
the proton-disordered phase to be stable, in agreement with
Ref. [15], where other less-known models were studied.
On the other hand, popular water models like SPC/E [35],
TIP4P [36], TIP5P-E [37], and NvdE [13] models predict the
proton-ordered phases to be more stable in the low-temperature
limit. Among these studies, only the NvdE [13] model
predicts the ferroelectric-ordered phase as the lowest energy
phase, in agreement with experiments, while the other three
models predict the stable phase to be antiferroelectric-ordered.
In this same study, it was also shown that modifying the
polarizability of the KW-pol model was enough to favor
ferroelectric ordering over disordered configurations at low
T [15]. Therefore, polarizability is an important factor in
obtaining the correct potential energy surface.
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The effect of proton disorder on the hexagonal ice structure
has also been studied using ab initio density functional
theory (DFT). DFT calculations correctly reproduce the lattice
structure [16], and give the cohesive energy of ferroelectric-
ordered ice to be larger than either antiferroelectric-ordered
or disordered ices [17,18]. That is, ferroelectric-ordered ice is
the stable ground state. A recent DFT study of ice slabs shows
that contrary to the bulk case, the antiferroelectric-ordered
ice is more stable in the case of thin films [38]. DFT-based
simulations have also been used to predict the phase-transition
temperature. A Monte Carlo study, where DFT calculations of
hydrogen bond configuration energies are used to parametrize
a model to perform Monte Carlo simulations, predicted ice
XI as the most stable phase, with a transition temperature of
98 K [19,20]. Another recent DFT-based Monte Carlo study
of dielectric properties of ice predicted the temperature of the
order-disorder phase transition to be around 70 K–80 K [21].
The advantage of DFT-based Monte Carlo simulations is that
they can explore the configurational entropy of the free energy
surface in good detail. However, none of these calculations
include zero-point nuclear quantum effects, or thereby inves-
tigate the transition temperature difference between different
isotopes. Our goal is to investigate the order/disorder transition
from ferroelectric-ordered ice or antiferroelectric-ordered ice
to disordered ice, with different isotopic compositions, from
an ab initio perspective, including nuclear quantum effects.

In our study we also compare a polarizable force-field
model, TTM3-F [39], to DFT calculations for the prediction of
the most stable phase at low temperatures, including zero-point
corrections.

II. THEORY

In a recent study, we explained the anomalous isotope
effect on the volume of ice [29,30,33] by obtaining the free
energy with ab initio DFT within the quasiharmonic approx-
imation. We have shown that the anticorrelation between the
intramolecular OH covalent bonds and the intermolecular
hydrogen bonds makes the volume per molecule of D2O ice
larger than that of H2O ice [33].

In this work, we extend our study of nuclear quantum
effects to analyze the contribution to the order/disorder phase
transition using both ab initio DFT functionals and the TTM3-
F [39] force-field model. We investigate both ferroelectric-
ordered/disordered and antiferroelectric-ordered/disordered
phase transitions. In addition, we analyze the importance of
van der Waals forces by comparing a generalized gradient ap-
proximated functional, Perdew-Burke-Ernzerhof (PBE) [40],
to a van der Waals functional [41,42], vdW-DFPBE. We obtain
the temperature dependence of the free energy for both ice
phases using the quasiharmonic approximation (QHA), and
we compare the phase-transition temperature of different
isotopes.

A. Free energy within quasiharmonic approximation

To account for nuclear quantum effects, quantum harmonic
eigenstates are needed as a function of volume V , at volumes
near V0, the “frozen lattice” zero-pressure volume that mini-
mizes the Born-Oppenheimer energy, E0(V ). To lowest order

in a Taylor series around V0, we have

E0(V ) = E0(V0) + B0

2V0
(V − V0)2 (1)

and

ωk(V ) = ω(V0)

(
1 − γk

V − V0

V0

)
. (2)

B0 is the dominant part of the bulk modulus, omitting
vibrational corrections which will be discussed in a later paper.
The “mode Grüneisen parameters” γk are defined as

γk = −∂(ln ωk)

∂(ln V )
= − V

ωk

∂ωk

∂V
. (3)

The phonon frequencies, ωk , are calculated at three different
volumes. The volume dependence of ωk(V ) is calculated to
the linear order. Then the Helmholtz free energy F (V,T ) [43]
of independent harmonic oscillators acquires a volume depen-
dence through ωk(V ),

F (V,T ) = E0(V )

+
∑

k

[
�ωk(V )

2
+ kBT ln

(
1 − e−�ωk (V )/kBT

)]

−T SH . (4)

The index k runs over both phonon branches and phonon
wave vectors within the Brillouin zone. This “quasiharmonic”
approximation is correct to first order for volume derivatives
like P = −(∂F/∂V )T . Higher volume derivatives, such as
B(T ), in general, may require higher volume derivatives of E0

and ωk . As shown in our recent contributions [33,44], the first
derivative in Eq. (2) is a good approximation for hexagonal
ice. The temperature dependence of volume VFmin (T ) is then
found in the usual way, by minimizing F (V,T ) at fixed T , the
same as setting P (T ) = 0.

The last part of the free energy, SH , is the entropy of
the proton disorder. This term is zero for proton-ordered
ice phases. For the proton-disordered phase, ice Ih, we use
the estimation by Pauling, SH = NkB ln(3/2), which was
obtained by counting hydrogen orientations that obey the ice
rules [45] and experimentally confirmed for fully disordered
cases [46,47]. We assume that this term does not change with
temperature.

Last, the classical limit of the free energy is obtained by
taking the high-temperature limit of the QHA:

F (V,T )=E0(V )+
∑

k

(
kBT ln

{
�ωk[V (T )]

kBT

})
−T SH . (5)

B. Cohesive energy

To determine which structure is the most stable one at zero
temperature, cohesive energies of ices are calculated without
(E0

c ) and with (Ec) zero-point effects. The cohesive energy is
defined as the amount the energy of a molecule is lowered in
a crystal relative to in vacuum,

E0
c = Eice

0

Nmolecules
− Emonomer

0 , (6)

Ec = F ice(VFmin ,0)

Nmolecules
− Emonomer

0 − Emonomer
vib , (7)
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where the vibrational energy
∑

k �ωk/2 of the three modes of
the monomer is Emonomer

vib . The classical cohesive energy, E0
c

is defined in Eq. (6) using the Kohn-Sham energies of the ice
and monomer; similarly, the quantum cohesive energy with
zero-point effects, Ec is defined in Eq. (7).

III. SIMULATION DETAILS

A. System description

In order to predict the most stable phase of hexagonal
ice in the zero-temperature limit, we performed total energy
calculations of three hexagonal ices with different proton
configurations.

(i) Ice XI. This is the ferroelectric-proton-ordered ice.
Oxygen atoms are constrained to the hexagonal wurtzite
lattice and hydrogen atoms are ordered such that ice XI
has a net dipole moment along the ĉ axis, shown in Fig. 1.
Precise measurements of lattice structure of ice XI have shown
ferroelectric ordering, with a net dipole moment along the ĉ

axis [23–28]. There are 4 molecules per formula unit. However,
TTM3-F calculations were performed for a 3a × 2

√
3a × 2c

supercell with 96 molecules, with the same cell size as
disordered ice Ih.

(ii) Ice aXI. We label the antiferroelectric-proton-ordered
ice as ice aXI. Ice aXI has 8 molecules in the unit cell. The
unit cell is doubled from the ferroelectric proton-ordered ice XI
along the x − y plane, with dipole moments of the neighboring
molecules pointing in opposite directions such that the system
has no net dipole moment, as shown in Fig. 2. Similarly, we
have used a unit cell of 8 molecules for the DFT and 96
molecules for the TTM3-F calculations.

(iii) Ice Ih. Experimentally, the lattice structures of light
(H2O) and heavy (D2O) proton-disordered hexagonal ice Ih
have been measured using both synchrotron radiation [29,30]
and neutron diffraction [26], with good agreement. Oxygen
atoms still have an underlying hexagonal lattice, while hy-
drogen atoms are disordered such that it has no net dipole
moment. An example of this system is shown in Fig. 3. To
accommodate different proton-disordered configurations in ice

FIG. 1. (Color online) Unit cell of the ferroelectric proton-
ordered ice XI structure. The four molecules in the unit cell are
labeled with star symbols next to them, and a and c lattice vectors
are shown. The image on the left is the side view of the x − z plane;
the image on the right is the top view of the x − y plane.

FIG. 2. (Color online) Antiferroelectric proton-ordered ice aXI
structure. The eight molecules in the unit cell are labeled with star
symbols next to them, and a, b, and c lattice vectors are shown. The
image on the left is the side view of the x − z plane; the image on the
right is the top view of the x − y plane.

Ih, we have used a large cell of 96 molecules with dimension
3a × 2

√
3a × 2c in our DFT calculations.

We have computed five different 96-molecule configura-
tions of ice Ih using the TTM3-F model. They are generated
with an algorithm that goes over all possible allowed proton
configurations and produces structures with no net dipole
moment [15].

B. Simulation procedure

We used the SIESTA code [48,49] to perform DFT calcula-
tions within the generalized gradient approximation (GGA)
to the exchange-and-correlation (XC) functional. The cal-
culations use PBE and vdW-DFPBE functionals [40–42] to
compare nonlocal van der Waals effects with semilocal GGA
approximations. These density functionals have previously
been shown to give good results for volume calculations of
hexagonal ice Ih [33].

Full structural relaxations for calculating the E0(V ) curve
are performed with the tζ + p basis. For these relaxations,
we have used a real-space mesh cutoff of 500 Ry for the
integrals, electronic k-grid cutoff of 10 Å(corresponding to 38
k points) for unit cell calculations of ice Ih, force tolerance of
0.001 eV/Å, and a density matrix tolerance of 10−5 electrons.
Instead of doing a variable cell optimization, we calculate the
energy of the relaxed structure at a fixed volume for each lattice
parameter.

FIG. 3. (Color online) Proton-disordered ice Ih structure. The
image on the left is the side view of the x − z plane; the image
on the right is the top view of the x − y plane.
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Even though results with the tζ + p basis are accurate
enough to obtain general structural properties [33], for precise
order-disorder free energy values, the energy must be very
well converged. Recently, a systematic method to obtain
the finite-range atomic basis sets for liquid water and ice
was proposed [50]. We use the quadruple-ζ double-polarized
(qζ + dp) basis obtained with the new proposed framework.
We calculate the energy of the structures again, with the
qζ + dp basis, without relaxation.

For the tζ + p basis, the error compared to the qζ + dp

basis is −0.23% in lattice constant a, −0.28% in c, and
−0.71% in the total volume. The change in the energy, E0(V0)
from tζ + p basis to the qζ + dp basis without relaxation is
948.6 meV. Further relaxing the structures with the qζ + dp

basis does not change the lattice parameters, and changes
the energy only by 1.3 meV. Details of this calculation and
the lattice parameters with qζ + dp basis are given in the
Supplemental Material (SM) [51].

For the free energy calculations which include the nuclear
quantum effects, the vibrational modes are calculated using
the frozen phonon approximation. All the force constant
calculations are performed with the tζ + p basis. There
are two reasons for this: The tζ + p basis gives a good
first approximation to the configurational information, and
the qζ + dp basis is costly in computer time. In addition,
the largest error in the free energy calculations comes from
the initial E0(V ) contribution, which we reduce significantly,
as explained above. The error in the zero-point energy contri-
bution is much smaller than the electronic energy error. The
force constant calculations of proton-ordered ice XI structure
use a finer real-space mesh cutoff of 800 Ry and an atomic
displacement of �x = 0.06 Å. Similarly, the force constant
calculations of proton-disordered ice Ih use a real-space mesh
cutoff of 500 Ry and an atomic displacement of �x = 0.08 Å
for the frozen phonon calculations. The acoustic sum rule has
been used throughout the study.

The phonon frequencies, ωk(V0) and Grüneisen parameters
γk(V0) are obtained by diagonalizing the dynamical matrix,
computed by finite differences from the atomic forces in a
(3 × 3 × 3) supercell, at volumes slightly below and above V0.
We tested these parameters to obtain force constants in phonon
calculations, so that the Grüneisen parameter calculations have
minimum noise [33]. The Grüneisen parameters are calculated
for three volumes corresponding to isotropic expansion and
compression around the minimum. In order to cover the
full Brillouin zone of ice XI and ice aXI, 729 k points are

selected, dividing each reciprocal lattice vector into nine equal
sections.

IV. RESULTS

A. Order-disorder phase transition

To understand the phase transition between proton-
disordered and proton-ordered ice, we calculated the cohesive
energy from Eqs. (6) and (7). The cohesive energy including
the zero-point nuclear quantum effects are also presented
in Table I. The results from different proton-disordered
configurations using the TTM3-F model all lie within ±0.22
meV of each other, as indicated in the first line of Table I. The
change in the cohesive energy due to the residual entropy of
hydrogen disorder is on the order of 0.22 meV, which means
that our quantitative prediction of the most stable phase is
within this range.

Both DFT functionals predict stability to decrease in the
order ice XI → ice aXI → ice Ih. This agrees with the exper-
iments that the structure of the ordered phase is ferroelectric.
On the other hand, TTM3-F predicts the stability order to
be the reverse, ice Ih → ice aXI → ice XI, giving the wrong
ground state and no phase transition. Furthermore, considering
the error in the cohesive energy, it is impossible to predict the
correct stable phase at the zero-temperature limit with this
model. The phase transition can only be obtained with the
DFT calculations.

In order to analyze the proton order-to-disorder phase-
transition temperature, we study the Helmholtz free energy
at zero pressure. We evaluate the volume dependence of
free energy, F (V ) at fixed temperature and find the value
of free energy minimum, F [VFmin (T )]. Therefore, we obtain
a temperature dependence of free energy, by evaluating free
energy minimum for each temperature, F [VFmin (T )], using
Eq. (5) or (4).

In the classical limit of the free energy, without considering
nuclear quantum effects, as given in Eq. (5), DFT predicts a
phase transition, regardless of the chosen functional. In addi-
tion, both semilocal PBE and nonlocal vdW-DFPBE functionals
overestimate the phase transition temperature, when nuclear
quantum effects are not included in the calculations. On the
other hand, the TTM3-F force-field model does not correctly
predict the stable phase in the low-temperature limit, and
the difference between the free energies of the two phases
increases with temperature. Therefore, it does not show a

TABLE I. Classical (E0
c ) and quantum (Ec) cohesive energies, in meV. Quantum values include zero-point effects.

FF/XC Ice E0
c H2O D2O H2

18O

TTM3-F Ih 601.07 ± 0.22 521.17 ± 0.22 536.24 ± 0.22 522.87 ± 0.23
TTM3-F aXI 600.30 520.33 535.41 522.04
TTM3-F XI 599.71 520.11 535.11 521.81
PBE Ih 620.44 502.07 526.70 504.15
PBE aXI 626.21 507.17 531.95 509.25
PBE XI 629.06 509.02 534.07 511.11
vdW-DFPBE Ih 723.94 601.64 627.65 603.64
vdW-DFPBE aXI 725.53 602.58 628.80 604.57
vdW-DFPBE XI 728.75 605.18 631.52 607.18
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FIG. 4. (Color online) Relative free energy per molecule includ-
ing the quantum zero-point effects as a function of temperature. The
lines show DFT results with the vdW-DFPBE functional and the dashed
lines are the results with the TTM3-F model. DFT correctly predicts
the most stable phase as ice XI for low temperatures, with an energy
difference of ∼4.5 meV. For low temperatures, the TTM3-F model
predicts ice Ih as the stable phase with ∼1 meV energy difference at
zero temperature; and a separation of energy at higher temperatures,
making the prediction correct for high temperatures only. The results
of the TTM3-F model for ice XI and ice aXI represented by black
and red dashed lines, respectively, are almost indistinguishable in this
scale.

phase transition. We present the full temperature dependence
of classical free energy in the SM [51]. To understand how
each component of Eq. (5) contributes to the total free energy,
we also present the temperature dependence of E0[VFmin (T )]
and −T S terms separately in the SM [51].

B. Isotope effects in the transition temperature

Going further, the nuclear zero-point effects are calculated
to compare the predicted phase transition temperature to the
experiments. Figure 4 shows the temperature dependence
of the free energy with zero-point effects for H2O. At all
temperatures, the TTM3-F model predicts ice Ih to be the

stable phase. DFT correctly predicts the most stable phase as
the ferroelectric-ordered ice XI for low temperatures, with an
energy difference of ∼4.5 meV. As the temperature increases,
there is a crossing at T = 91 K and the proton-disordered ice
Ih becomes the stable phase beyond this temperature for H2O.
DFT predicts antiferroelectric ice aXI to have lower free energy
than ice Ih at low T , but at all T , ferroelectric ice XI is preferred
to ice aXI. The crossover from the antiferroelectric-ordered ice
aXI to proton-disordered ice Ih is at much lower temperatures,
because ice aXI is less cohesive than the ferroelectric-ordered
ice XI. Therefore, we establish that with DFT, the most stable
phase at low temperatures is the ferroelectric-ordered ice XI, in
agreement with the experiments. For the rest of the transition
temperature discussion, we focus on the ferroelectric-ordered
to disordered transition, ice XI/ice Ih.

Inclusion of zero-point effects also allows us to obtain
the isotope effect in the phase-transition temperature since
it is experimentally known that the order-disorder transition
temperature of heavy ice (D2O) is higher than that of light ice
(H2O) by 4 K [4,6]. Table II shows that we already observe the
phase transition with calculations at the classical limit of free
energy, for both PBE and vdW-DFPBE approximations, and
that the transition temperature decreases with the inclusion
of zero-point effects. The vdW-DFPBE results are below the
glass transition temperature around 100 K–110 K [7,8], where
proton mobility diminishes. This is in general agreement with
the experimental order-disorder phase-transition temperatures.
Although PBE gives a correct prediction of the stable phase
and an isotope effect of 6.4%, the value of the phase-transition
temperature is much larger than the experimental range.
In agreement with the experimental 4 K difference in the
phase-transition temperature of the isotopes, the vdW-DFPBE

functional predicted transition temperature of the heavy ice
is larger than the light ice with a 6 K difference. As a
result, with this method, the ratio between the phase-transition
temperatures of heavy and light ice is reproduced within
1% of the experimental value and the isotope effect on the
temperature with respect to the H2O transition temperature
is calculated to be 6.6%, as compared to the 5.6% of the
experimental isotope effect. Therefore, it is important to note
that inclusion of nonlocal van der Waals forces is critical for a
reasonable prediction of the transition temperature.

To understand the main reason behind the difference
between the transition temperatures of different isotopes, we
study the temperature dependence of each component of
Eq. (4) separately, as presented in Fig. 5. The electronic energy

TABLE II. The classical (T 0
c ) and quantum (Tc) proton order-to-disorder transition temperature, Tc (K) including zero-point effects for

ice Ih-ice XI and ice Ih-ice aXI. The ratio of the temperature for different isotopes is given as R(D) = D2O/H2O and R(18O) = H2
18O/H2O,

and the isotope effect on the temperature with respect to the H2O transition temperature is also given as the isotope effect percentage:
IS(A − B) = T (A)

T (B) − 1.

Ice Method T 0
c H2O D2O H2

18O R(D) R(18O) IS(D-H) IS(18O-16O)

aXI PBE 153 151 156 151 1.03 1.00 +3.31% 0.00%
aXI vdW-DFPBE 42 30 35 30 1.17 1.00 +16.67% 0.00%
XI PBE 221 202 215 203 1.06 1.01 +6.44% +0.50%
XI vdW-DFPBE 105 91 97 90 1.07 0.99 +6.59% −1.10%
XI Expt. [4,6] 72 76 1.06 +5.56%
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difference between the two ices, E0(Ih) − E0(XI), is larger for
H2O than for D2O. This would result in a larger transition tem-
perature for H2O than D2O, contradicting experiments. The
last two terms, zero-point-free vibrational entropy and energy
−T Sv + Ev − EZP = ∑

k kBT ln (1 − e−�ωk [VFmin (T )]/kBT ) and
configurational entropy −T SH also result in larger energy
difference for H2O than D2O. However, the zero-point vibra-
tional energy EZP = ∑

k �ωk[VFmin (T )]/2 difference between
the two ices, EZP(Ih) − EZP(XI), is smaller for H2O than for
D2O. This is the only term that shifts the transition temperature
of H2O below that of D2O. These results show that the phase
transition occurs at a lower T for H2O than for D2O because
of the zero-point energies of the phonon modes.

This can also be seen from a simple model. The transition
occurs when the free energies of the two ices are equal. For
the sake of simplicity, we can set the zero of energy at the
frozen lattice cohesive energy of ice XI and denoting by Ed =
E0(Ih) − E0(XI) and SH the energy and the residual entropy
caused by the disorder of ice Ih. The free energies are F (XI) =
0 and F (Ih) = Ed − T SH . Therefore, at the zeroth order, in
the classical limit, it follows that Tc(0) = Ed/SH . When the
vibrations are included, the free energies from Eq. (4) are equal
at the transition temperature,

Tc = Ed

SH − kB

∑
k ln

{
sinh[�ωk (Ih)/2kBTc]
sinh[�ωk (XI)/2kBTc]

} . (8)

A more detailed discussion with the high- and low-T limits
of this transition temperature and the latent heat can be found
in the SM [51]. Assuming the shifts are not large, the isotope
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FIG. 5. (Color online) (Top) Free energy difference per molecule
between ice Ih and ice XI calculated with vdW-DFPBE functional in
the region of the phase transition. (Bottom) Contributions to this
free energy difference by each term in Eq. (4). (Left) Frozen lattice
electronic term. (Middle) Zero-point vibrational energy. (Right)
Remaining terms. All the energies on the bottom plots have been
shifted to allow them to be compared in the same energy scale.
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shift in the transition temperature can be simplified to

T D2O
c − T H2O

c

T
H2O
c

= kBTc

Ed

∑
k

ln

[
Rk(Ih)

Rk(XI)

]
, (9)

where

Rk(Ih) = sinh
[
�ω

D2O
k (Ih)/2kBTc

]
sinh

[
�ω

D2O
k (Ih)/2kBTc

] , (10)

and similarly for Rk(XI). Then the low-temperature limit
becomes

�Tc(low)

T
H2O
c

= �

2Ed

∑
k

{[
ω

D2O
k (Ih) − ω

D2O
k (XI)

]

− [
ω

H2O
k (Ih) − ω

H2O
k (XI)

]}
, (11)

where the difference in the frequencies exactly corresponds
to the energy difference shown in the bottom middle panel of
Fig. 5. This model clearly shows that the main source of the
isotope effect in the transition temperature is the difference in
the zero-point energies of the different ices.

This is also evident from the phonon density of states of
the two ices. Figure 6 shows phonon density of states for
H2O for both proton-ordered ice XI and proton-disordered
ice Ih at zero temperature. The colors represent the average
Grüneisen parameter of each band separately. The main effect
driving the isotope differences is associated with the blueshift
of the librational band in ice XI with respect to ice Ih and a
corresponding redshift of the stretching band. Therefore, with
proton ordering, the covalency of the intramolecular bonds
is weakened, while the intermolecular hydrogen bonding
is strengthened. This, combined with the weights of the
Grüneisen parameters, results in an overall slightly larger
zero-point energy for ice XI than ice Ih.

One of the reasons for the quantitative difference from
the experimental results of transition temperature can be the
error in the estimation of residual entropy from disorder in
both systems. Experimentally, it has been shown that at the
transition, ice XI loses much but not all of the entropy at
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Tc [26]. However, it is not clear whether this arises from
equilibrium thermal disorder in ice XI or from failure to
complete the phase transition, leaving some domains of
nonequilibrium ice Ih coexisting with ice XI [22]. Another
reason for the quantitative difference can be the loss of
precision of the QHA at larger temperatures, because the
temperature dependence of the phonon vibrations is not taken
into account. This is also the case in the calculated V0

with isotope effects; the calculated values deviate from the
experimental values at larger temperatures [33]. However, this
deviation is not significant at around 100 K, which is the region
of interest of this work.

Finally, the exact values depend on the choice of the DFT
functional. While we have shown that the inclusion of vdW
interaction in the functional is crucial, it should be noted that
the local part of the XC functional also changes the structure
significantly. In Ref. [33], it is shown that vdW-DF functional
with the local XC flavor of revPBE softens the structure such
that the anomalous isotope effect on the V (T ) is not reproduced
at low temperatures. In addition, Ref. [52] studied the phonon
dispersion of ice XI. While the distribution of the modes
are almost identical, the values of the stretching modes are
higher and the librational modes are lower by ∼50 cm−1

than those calculated in this work. Furthermore, Ref. [53]
studied the nonlocal vdW functionals with different GGA
and hybrid functionals for the local XC and showed that the
cohesive energies depend on the choice of these functionals. A
hybrid functional with exact exchange for the local XC, with a
vdW functional for the nonlocal correlations, could be a good
candidate to improve on these results.

All in all, the QHA within DFT with nonlocal vdW forces
predicts a 6 K temperature difference between the isotopes,
as compared to the experimental 4 K difference. This isotope
shift is solely due to the nuclear quantum effects from the

phonon vibrational energy differences, and it is predicted
without invoking any other effects, such as tunneling.

V. CONCLUSION

In this study, we did a detailed analysis of the phase
transition between the ferroelectric vs antiferroelectric-proton-
ordered ice XI and disordered ice Ih. Ab initio DFT is necessary
to correctly predict the most stable phase of ice as the
ferroelectric-ordered ice XI. The TTM3-F force-field model
needs improvement for the energy predictions, especially at
low temperatures.

By including nuclear quantum effects to the free energy,
we have predicted the ferroelectric order-to-disorder phase
transition for hexagonal ices. The best accuracy requires
using the vdW-DFPBE functional, with a transition temperature
at about 91 K for H2O and 97 K for D2O. This 6 K
temperature difference is mainly due to the difference in
the zero-point energy of ice with different isotopes, while
entropy-related terms contribute in the opposite direction. The
method is robust to correctly predict and explain the isotope
effect on the order/disorder phase transition of hexagonal
ice Ih.
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