
Victor Malyshkin (Ed.)

 123

LN
CS

 9
25

1

13th International Conference, PaCT 2015
Petrozavodsk, Russia, August 31 – September 4, 2015
Proceedings

Parallel Computing
Technologies



Lecture Notes in Computer Science 9251
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Victor Malyshkin (Ed.)

Parallel Computing
Technologies
13th International Conference, PaCT 2015
Petrozavodsk, Russia, August 31 – September 4, 2015
Proceedings

123



Editor
Victor Malyshkin
Russian Academy of Sciences
Novosibirsk
Russia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21908-0 ISBN 978-3-319-21909-7 (eBook)
DOI 10.1007/978-3-319-21909-7

Library of Congress Control Number: 2015944720

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

The PaCT 2015 (Parallel Computing Technologies) conference was a four-day
conference held in Petrozavodsk (Russia). This was the 13th international conference in
the PaCT series. The conferences are held in Russia every odd year. The first con-
ference, PaCT 1991, was held in Novosibirsk (Academgorodok), September 7–11,
1991. The next PaCT conferences were held in Obninsk (near Moscow), August 30 to
September 4, 1993; in St. Petersburg, September 12–15, 1995; in Yaroslavl, Septem-
ber, 9–12, 1997; in Pushkin (near St. Petersburg), September, 6–10, 1999; in Aca-
demgorodok (Novosibirsk), September 3–7, 2001; in Nizhni Novgorod, September,
15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in Pereslavl-Zalessky, September
3–7, 2007; in Novosibirsk, August 31 – September 4, 2009; in Kazan, September
19–23, 2011, and in St. Petersburg, September 30 to October 4, 2013. Since 1995 all
the PaCT proceedings are published by Springer in the LNCS series. PaCT 2015 was
jointly organized by the Institute of Computational Mathematics and Mathematical
Geophysics (Russian Academy of Sciences), Novosibirsk State University, Novosi-
birsk State Technical University, Institute of Applied Mathematical Research (Karelian
Research Centre of Russian Academy of Sciences), and Petrozavodsk State University.
The aim of the conference is to give an overview of new developments, applications,
and trends in parallel computing technologies. We sincerely hope that the conference
will help our community to deepen its understanding of parallel computing technolo-
gies by providing a forum for an exchange of views between scientists and specialists
from all over the world. The conference attracted 87 participants from around the
world, with authors from 13 countries submitting papers. Of these, 53 papers were
selected for the conference as regular ones; there was also an invited speaker. All the
papers were reviewed by at least three referees. Many thanks to our sponsors: the
Ministry of Education and Science, Russian Academy of Sciences, and Russian Fund
for Basic Research.

September 2015 Victor Malyshkin



HPC Hardware Efficiency for Quantum
and Classical Molecular Dynamics

Vladimir V. Stegailov1,2,3(B), Nikita D. Orekhov1,2, and Grigory S. Smirnov1,2

1 Joint Institute for High Temperatures of RAS, Moscow, Russia
stegailov@gmail.com

2 Moscow Institute of Physics and Technology, Dolgoprudny, Russia
3 National Research University Higher School of Economics, Moscow, Russia

Abstract. Development of new HPC architectures proceeds faster than
the corresponding adjustment of the algorithms for such fundamental
mathematical models as quantum and classical molecular dynamics.
There is the need for clear guiding criteria for the computational effi-
ciency of a particular model on a particular hardware. LINPACK bench-
mark alone can no longer serve this role. In this work we consider a
practical metric of the time-to-solution versus the computational peak
performance of a given hardware system. In this metric we compare dif-
ferent hardware for the CP2K and LAMMPS software packages widely
used for atomistic modeling. The metric considered can serve as a uni-
versal unambiguous scale that ranges different types of supercomputers.

1 Introduction

The continuing rapid development of theoretical and computational methods of
atomistic simulations during past decades provides a basis of analysis and predic-
tion tools for chemistry, material science, condensed matter physics, molecular
biology and nanotechnology. Nowadays molecular dynamics (MD) method that
describes motion of individual atoms by the Newton’s equations is a research
tool of highest importance. The computational speed and the efficiency of par-
allelization are the main factors that pose limitations on the length and time
scales accessible for MD models (the achievable extremes for classical MD are
trillions of atoms [4] and milliseconds [12], a typical MD step being 1 fs).

A researcher working in the field of atomistic simulation is an end user of
the complex and high performance software and hardware. The main technical
question is to find a solution as fast as possible, that is to select appropriate
HPC resources and to use them in a most efficient way [14].

In this work we consider a wide-spread type of supercomputer systems com-
prised of identical nodes and interconnected by a high speed network. Due to
the rapid development of hardware, at the moment there is a wide spectrum of
node types that can combine several CPUs and accelerators (e.g. GPU, MIC or
FPGA). The interconnect architecture spectrum dominated previously by the
fat tree and torus topologies has been enriched by the dragonfly and flattened
butterfly topologies, the PERCS topology etc.
c⃝ Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 469–473, 2015.
DOI: 10.1007/978-3-319-21909-7 45



470 V.V. Stegailov et al.

We can distinguish critical avenues in the development of high performance
MD models. Quantum MD (QMD) models demonstrate much higher require-
ments to the data communication speed and hence to the interconnect proper-
ties [5,7]. The deployment of hybrid architectures for electronic structure calcu-
lations and quantum MD is not mature enough. Classical MD (CMD) models
are less demanding with respect to data communication. The main limitation in
CMD is the computational complexity of interatomic potentials (e.g. [10,11,13])
that is determined by the performance of supercomputer nodes. Therefore hybrid
architectures of nodes are considered as a major perspective.

2 Problem Statement and Benchmarking Metric

Fundamental mathematical models (QMD and CMD) are well developed and
practically not subjected to changes. HPC hardware architectures change quite
quickly. Algorithms and software couple fundamental mathematical models with
HPC hardware, however they can be adapted to new hardware quite slowly and
therefore the role of legacy software is huge. Having in mind the criterion of the
“time-to-solution” minimization for particular mathematical models we would
like to answer the following questions: What hardware is more efficient if we
use currently available software? What is the efficiency of emerging software
designed for new hardware? And how complicated is this software development?

The LINPACK test can not serve as a tool for benchmarking atomistic
models. More specialized tests have emerged [1,6,9]. Here we use CP2K and
LAMMPS codes as representatives of the best HPC atomistic simulation soft-
ware. Existing benchmarks suites (e.g. [9] and references therein) test the cou-
pling of selected software with hardware and here we follow this route for QMD.
But for CMD we would like to present a wider view: how efficiently mathematical
models are coupled with hardware if we allow software to be tuned.

The “time-to-solution” criterion leads us to the evident choice of a time for
one MD integration step as one parameter for the metric. The second parameter
should characterize the hardware. Usually the number of some abstract process-
ing elements (e.g. cores) is considered. However although this metric serves well
in the weak and strong scaling benchmarks for the given system, it does not allow
to compare essentially different hardware. In order to overcome this problem we
consider the total peak performance Rpeak as a second parameter for the metric
that put on equal footing all HPC hardware under consideration. It is in favor
of this metric that Rpeak is a usual marketing aspect for novel hardware.

3 Comparison

Figure 1 shows the comparison for the standard H2O benchmark for QMD
(CP2K): IBM Regatta 690+ [8], Cray XT3 and XT5 [15], IBM BlueGene/P [2]
and K-100 cluster of Keldysh Institute of Applied Mathematics in Moscow (64
nodes connected by Infiniband QDR, each node with 2 six-core Intel Xeon X5670
and 3 NVidia Fermi C2050).



HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics 471

Fig. 1. Water model benchmarks with CP2K for various supercomputers (32-2048
water molecules). Numbers show how many nodes are used to run the benchmark.
Dashed lines show ideal speed-up t ∼ R−1

peak.

For benchmarks with several nodes different supercomputers demonstrate
close performance (in seconds per MD step). For large models this agreement
is better. In the case of 512 molecules we see that the combination of hardware
with compilers provides the same level of efficiency.

The role of the interconnect becomes evident in the multi-node cases where
the speed-up worsens. Fat-tree systems show better performance for small model
sizes. Torus interconnects of Cray XT3, XT5 and IBM BlueGene/P provides
superior strong scaling for large system sizes (in accordance with the detailed
analysis for another QMD code SIESTA [3]).

IBM systems show inferior performance in this metric because the fused
multiply-add (FMA) operations supported by IBM PowerPC CPUs play no
essential role for QMD algorithms.

Figure 2 shows the comparison for the standard Lennard-Jones benchmark
for CMD (LAMMPS): pure CPU systems and hybrid systems with NVidia Fermi
X5670, NVidia Kepler K40 and Intel Xeon Phi SE10X.

All the data (old benchmarks1 including) for CPUs without vectorization
follow the same trend (with the exception of IBM PowerPC 440 CPU due to
the FMA issue mentioned above). Manual vectorization with the USER-INTEL
package gives ∼ 2x speed-up. This is the most efficient way among all imple-
mented in LAMMPS to deploy the total peak performance of hardware.

Hybrid nodes with GPUs show inferior timings with respect to CPU-only
nodes when compared by the similar Rpeak. There are three GPU-oriented ver-
sions ofMD algorithms in LAMMPS implemented with NVidia CUDA technology
(introduced in June 2007). The GPU package is the oldest one introduced in the
1st quarter 2010 and developed up to the 3rd quarter of 2013. The USER-CUDA

1 http://lammps.sandia.gov/bench.html.



472 V.V. Stegailov et al.

0.001 0.01 0.1 1 10

Total peak performance, TFlops

10-9

10-8

10-7

10-6

10-5

Time per atom for 1 MD step, sec

1 1 1

10-9

10-8

10-7

10-6

10-5CPUs
NVidia 
Fermi

NVidia 
Kepler

Intel
Xeon Phi

1

2

3

4

5

x0.25

x0.5

Fig. 2. Lennard-Jones liquid benchmarks with LAMMPS. Circles show CPU bench-
marks without vectorization: open circles and crossed circles show Intel Xeon bench-
marks on the “Lomonosov” cluster of Moscow State University and K-100 cluster (their
discrepancy illustrate the precision of the metric deployed), black circles are the legacy
data: 1 – Pentium II 333MHz, 2 – DEC Alpha 500 MHz, 3 – PowerPC 440 700 MHz,
4 – Power4 1.3GHz and 5 – Intel Xeon 3.47 GHz. Boxes correspond to Intel Xeon bench-
marks with USER-INTEL. Triangles show the timings from the “Lomonosov” cluster
using nodes with NVidia GPUs and different algorithms implemented in LAMMPS:
△ – GPU, ∇ – USER-CUDA, ▹ – KOKKOS. Filled triangles are the benchmarks pub-
lished on the LAMMPS web-site. The diamonds are the data for Intel Xeon Phi in the
native mode (the lower diamond corresponds to the KOKKOS package).

package is a newer one introduced in the 3rd quarter 2011. The KOKKOS package
is the most recent introduced in the 2nd quarter 2014 (and it performs essentially
better on the novel NVidia Kepler K40).

Nodes with Intel Xeon Phi (an accelerator that became available in 2012–
2013) in the native mode show more than ∼ 2x speed-up if LAMMPS is used
with the KOKKOS package. However Intel Xeon Phi also shows inferior timings
with respect to CPU-only nodes when compared by the similar Rpeak.

4 Conclusions

We introduced a novel metric “time-to-solution (in seconds) vs Rpeak (in Flops)”
and applied it to representative examples of QMD and CMD. This metric allows
us to compare existing HPC hardware, hybrid systems including.

CP2K shows better strong scaling on supercomputers with torus intercon-
nects and especially on IBM BlueGene/P. LAMMPS performs with the best effi-
ciency on Intel Xeon CPUs with manual vectorization of crucial routines. Since
MD applications do not use FMA operations IBM PowerPC CPUs perform for
these tasks at a fraction of Rpeak.

The example of NVidia GPU shows that porting of an existing package on the
new hardware takes several years (only after ∼ 7 years of development CUDA-
based algorithms have approached CPU algorithms efficiency). After ∼ 3 years
of development classical MD algorithms for Intel Xeon Phi are still not efficient.



HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics 473

Acknowledgment. The work is partially supported by the grant No. 14-50-00124 of
the Russian Science Foundation.

References

1. Coral benchmark codes. https://asc.llnl.gov/CORAL-benchmarks/
2. Bethune, I., Carter, A., Guo, X., Korosoglou, P.: Million atom KS-DFT with CP2K.

http://www.prace-project.eu/IMG/pdf/cp2k.pdf
3. Corsetti, F.: Performance analysis of electronic structure codes on HPC systems:

a case study of SIESTA. PLoS ONE 9(4), e95390 (2014)
4. Eckhardt, W., Heinecke, A., Bader, R., Brehm, M., Hammer, N., Huber, H.,

Kleinhenz, H.-G., Vrabec, J., Hasse, H., Horsch, M., Bernreuther, M., Glass, C.W.,
Niethammer, C., Bode, A., Bungartz, H.-J.: 591 TFLOPS multi-trillion particles
simulation on SuperMUC. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2013. LNCS, vol. 7905, pp. 1–12. Springer, Heidelberg (2013)

5. Gygi, F.: Large-scale first-principles molecular dynamics: moving from terascale to
petascale computing. J. Phys. Conf. Ser. 46(1), 268 (2006)

6. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Technical report, Sandia Nat. Laboratories
(2009)

7. Hutter, J., Curioni, A.: Dual-level parallelism for ab initio molecular dynamics:
reaching teraflop performance with the CPMD code. Parallel Comput. 31(1), 1–17
(2005)

8. Krack, M., Parrinello, M.: Quickstep: make the atoms dance. High Perform. Com-
put. Chem. 25, 29–51 (2004)

9. Muller,M.S., vanWaveren,M., Lieberman, R.,Whitney, B., Saito, H., Kumaran, K.,
Baron, J., Brantley, W.C., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC
MPI2007 – an application benchmark suite for parallel systems using MPI. Concur-
rency Comput. Pract. Experience 22(2), 191–205 (2010)

10. Orekhov, N.D., Stegailov, V.V.: Graphite melting: atomistic kinetics bridges theory
and experiment. Carbon 87, 358–364 (2015)

11. Orekhov, N.D., Stegailov, V.V.: Molecular-dynamics based insights into the prob-
lem of graphite melting. J. Phys.: Conf. Ser. (2015)

12. Piana, S., Klepeis, J.L., Shaw, D.E.: Assessing the accuracy of physical models used
in protein-folding simulations: quantitative evidence from long molecular dynamics
simulations. Curr. Opin. Struct. Biol. 24, 98–105 (2014)

13. Smirnov, G.S., Stegailov, V.V.: Toward determination of the new hydrogen hydrate
clathrate structures. J. Phys. Chem. Lett. 4(21), 3560–3564 (2013)

14. Stegailov, V.V., Norman, G.E.: Challenges to the supercomputer development in
Russia: a HPC user perspective. Program Systems: Theory and Applications 5(1),
111–152 (2014). http://psta.psiras.ru/read/psta2014 1 111-152.pdf

15. VandeVondele, J.: CP2K: parallel algorithms. www.training.prace-ri.eu/uploads/
tx pracetmo/cpw09 cp2k parallel.pdf


	Preface
	Organization
	Contents
	Parallel Models, Algorithms and Programming Methods
	Software System for Maximal Parallelization of Algorithms on the Base of the Conception of Q-determinant
	1 Introduction
	2 The Conception of Q-determinant
	3 The Software System QStudio
	4 Preparation Q-determinant Algorithm
	5 The Detection of the Most Rapid Algorithm Realization and the Building of Plan of Its Execution
	6 Conclusion
	References

	Highly Parallel Multigrid Solvers for Multicore and Manycore Processors
	1 Introduction
	2 Iterative Methods and Their Parallelization Properties
	3 Throughput-Oriented Processors and Storage Schemes
	4 Description of the Algebraic Multigrid
	5 Multigrid as a Preconditioner
	6 Performance of the Multigrid Solvers
	7 Conclusion
	References

	Hierarchical Optimization of MPI Reduce Algorithms
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Related Work
	2.1 MPI Reduce Algorithms

	3 Hierarchical Optimization of MPI Reduce Algorithms
	3.1 Hierarchical Transformation of Flat Tree Reduce Algorithm
	3.2 Hierarchical Transformation of Pipeline Reduce Algorithm
	3.3 Hierarchical Transformation of Binary Reduce Algorithm
	3.4 Hierarchical Transformation of Binomial Reduce Algorithm
	3.5 Hierarchical Transformation of Rabenseifner's Reduce Algorithm
	3.6 Possible Overheads in the Hierarchical Design

	4 Experiments
	4.1 Experiments: One Process per Core
	4.2 Experiments: One Process per Node

	5 Conclusion
	References

	On Parallel Computational Technologies of Augmented Domain Decomposition Methods
	1 Introduction
	2 Statement of the Problem and Algorithms
	3 Parallel Technologies of DDM
	4 Results of Numerical Experiments
	5 Conclusion
	References

	A Modular-Positional Computation Technique for Multiple-Precision Floating-Point Arithmetic
	1 Introduction
	2 Residue Number System
	3 Interval-Positional Characteristic Method for Non-modular Operations in RNS
	4 Format for Representation of Floating-Point Multiple-Precision Numbers
	5 High-Precision Arithmetic Library
	5.1 Structure and Features
	5.2 Efficiency Evaluations

	6 Conclusion
	References

	Creation of Data Mining Algorithms as Functional Expression for Parallel and Distributed Execution
	Abstract
	1 Introduction
	2 Related Work
	3 Data Mining Algorithm as Functional Expression
	4 Experimental Results
	5 Conclusion
	Acknowledgments
	References

	Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky Factorization
	Abstract
	1 Introduction
	2 Related Work
	2.1 Direct Methods for Sparse SLAE
	2.2 Multifrontal Method Overview
	2.3 Parallel BLAS Usage
	2.4 Parallelization in Terms of Elimination Tree
	2.5 Static Parallelization Strategies

	3 Dynamic Parallelization Strategies
	3.1 OpenMP Tasks
	3.2 Priority Queue

	4 Numerical Results and Discussion
	4.1 Dependency of alg_queue Algorithm Performance on the Parameters
	4.2 A Comparison with State-of-the-Art Solvers

	5 Conclusion and Future Work
	Acknowledgments
	References

	Distributed Algorithm of Data Allocation in the Fragmented Programming System LuNA
	1 Introduction
	2 Related Works
	3 Requirements for Data Allocation Algorithm
	4 Distributed Algorithms of Data Allocation
	4.1 Hash-and-Track Algorithm
	4.2 Rope-of-Beads Algorithm

	5 Experiments
	5.1 Experiment Results

	6 Conclusion
	References

	Control Flow Usage to Improve Performance of Fragmented Programs Execution
	Abstract
	1 Introduction
	2 Related Works
	3 LuNA Fragmented Programming System
	4 Suggested Approach
	5 Performance Tests
	6 Conclusion
	Acknowledgements
	References

	Towards Application Energy Measurement and Modelling Tool Support
	1 Introduction
	2 Libhclenergy
	2.1 Measurement Infrastructure
	2.2 Experimental Platform
	2.3 Measurement of Distributed Applications
	2.4 API Features

	3 Greenman
	4 Applying Our API
	5 Related Works
	5.1 Existing Tools

	6 Conclusion
	7 Future Works
	References

	The Mathematical Model and the Problem of Optimal Partitioning of Shared Memory for Work-Stealing Deques
	1 Introduction
	2 The Mathematical Model
	3 Conclusion
	References

	Dynamic Load Balancing Based on Rectilinear Partitioning in Particle-in-Cell Plasma Simulation
	1 Introduction
	2 PICADOR Particle-in-Cell Code
	3 Load Balancing Based on Rectilinear Partitioning
	3.1 Rectilinear Partitioning
	3.2 Implementation Overview

	4 Evaluation of Load Balancing Efficiency on a Test Plasma Heating Problem
	5 Load Balancing in Simulation of Plasma Target Irradiation by Two Laser Pulses
	5.1 Problem Statement
	5.2 Load Balancing Efficiency

	6 Summary
	References

	Unconventional Computing - Cellular Automata
	A Behavioral Analysis of Cellular Automata
	1 Introduction
	2 Cellular Automata and Their Behavior
	2.1 Cellular Automata
	2.2 Measures of Cellular Automaton Behavior
	2.3 Lempel-Ziv Complexity

	3 Behavioral Analysis
	3.1 Experimental Setup
	3.2 Complexity versus stability 
	3.3 Interference Between CA Design and Behavior
	3.4 The Nature of Multi-state CAs

	References

	Contradiction Between Parallelization Efficiency and Stochasticity in Cellular Automata Models of Reaction-Diffusion Phenomena
	1 Introduction
	2 Formal Representation of CA-Models
	3 Modes of CA Operation in Multiprocessor Environment
	3.1 Parallelization Costs for Simple CA
	3.2 Parallelization of Reaction-Diffusion Complex CA

	4 Simulation Results
	4.1 Wave Front Propagation CA Models
	4.2 Diffusion Limited Aggregation

	5 Conclusion
	References

	A Parallel Genetic Algorithm to Adjust a Cardiac Model Based on Cellular Automaton and Mass-Spring Systems
	1 Introduction
	2 Methods Part I: Discrete Model
	2.1 Modeling Action Potential Propagation with Cellular Automaton
	2.2 Modeling Mechanical Contraction with Anisotropic Mass-Spring Systems

	3 Methods Part II: Continuum Model
	4 Methods Part III: Automatic Tuning Parameter with Genetic Algorithm
	4.1 Computing Fitness
	4.2 GA Operators
	4.3 Parallel Code

	5 Results
	5.1 Automatic Tuning Parameter
	5.2 GA Parallel Performance

	6 Conclusions
	References

	Hexagonal Bravais--Miller Routing by Cellular Automata Agents
	1 Introduction
	2 Minimal Routing in the T Cyclic Grid
	2.1 Distance and Bravais--Miller Indices
	2.2 Shortest Path Routing in the Diamond
	2.3 Bravais--Miller Routing in the Orthogonal Tn
	2.4 Computing the Minimal Route in Tn
	2.5 Deterministic, Adaptive and Randomized Routing

	3 Modeling the Multi-Agent System
	3.1 Dynamics of the Multi-Agent System
	3.2 The CA--w Copy--Delete Rule

	4 Simulating HBM Routing Protocols
	4.1 Deadlock Situations and Protocols
	4.2 Test Cases
	4.3 Router Efficiency

	5 Conclusion
	References

	The Influence of Cellular Automaton Topology on the Opinion Formation
	1 Introduction
	2 The Ising-Based CA Opinion Formation Model
	3 Results and Conclusions
	References

	Cellular Automata Model of Electrons and Holes Annihilation in an Inhomogeneous Semiconductor
	1 Introduction
	2 The Model of Annihilation of Electrons and Holes in a Semiconductor
	2.1 The Mechanism of Annihilation of Electrons and Holes in a Semiconductor
	2.2 The Cellular Automata Model of Annihilation of Electrons and Holes in a Semiconductor

	3 Parallel Implementation of the CA Model of Electrons and Holes Annihilation
	4 Simulation Results
	5 Conclusion
	References

	Constructions Used in Associative Parallel Algorithms for Directed Graphs
	1 Introduction
	2 Simultaneous Finding the Single-Source Shortest Paths and Distances
	3 Updating the Shortest-Paths Subgraph
	4 Updating the Transitive Closure of a Digraph
	5 Conclusions
	References

	Oscillatory Network Based on Kuramoto Model for Image Segmentation
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Oscillatory Network for Image Segmentation
	3.1 Oscillatory Network Architecture
	3.2 Enhancements for Real Image Segmentation
	3.3 Parallel Implementation of Oscillatory Network

	4 Image Segmentation Results
	5 Conclusions
	References

	Using Monte Carlo Method for Searching Partitionings of Hard Variants of Boolean Satisfiability Problem
	1 Introduction
	2 Monte Carlo Approach to Statistical Estimation of Effectiveness of SAT Partitioning
	3 Algorithm for Minimization of Predictive Function
	4 Computational Experiments
	4.1 Time Estimations for Logical Cryptanalysis of A5/1
	4.2 Time Estimations for Logical Cryptanalysis of Bivium

	References

	A Class of Non-optimum-time 3n-Step FSSP Algorithms - A Survey
	1 Introduction
	2 A Class of 3n-Step Synchronization Algorithms
	2.1 Firing Squad Synchronization Problem
	2.2 A Class of 3n-Step Synchronization Algorithms
	2.3 Complexity Measures and Properties for Synchronization Algorithms
	2.4 A Brief History of the Developments of the 3n-Step FSSP Algorithms and Their Implementations

	3 Implementations of the 3n-Step FSSP Algorithms
	3.1 Fischer's Algorithm: A1
	3.2 Minsky-McCarthy Algorithm: A2
	3.3 Herman's 10-State Algorithm: A3
	3.4 Yunès Seven-State Algorithm: A4
	3.5 Umeo, Maeda, and Hongyo's 6-State Algorithm: A5
	3.6 Yunès 6-State Algorithm: A6
	3.7 A New 6-State Algorithm: A7
	3.8 A New 6-State Algorithm: A8
	3.9 Umeo-Yanagihara 5-State Algorithm: A9
	3.10 State-Change Complexity

	4 Discussions
	References

	CA - Model of Autowaves Formation in the Bacterial MinCDE System
	1 Introduction
	2 Oscillations in the Bacterial MinCDE System
	3 The Cellular-Automata Model of MinDE Autowaves Formation
	4 Computer Simulation Results
	5 Conclusion
	References

	Distributed Computing
	Agent-Based Approach to Monitoring and Control of Distributed Computing Environment
	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 Architecture
	5 Experimental Results
	6 Conclusions
	References

	Virtual Screening in a Desktop Grid: Replication and the Optimal Quorum
	1 Introduction
	2 The Model
	3 Optimal Quorum
	3.1 Basic Replication
	3.2 Additional Replication
	3.3 Reliable Positive Answers

	4 Examples
	References

	Partition Algorithm for Association Rules Mining in BOINC--Based Enterprise Desktop Grid
	1 Introduction
	2 Implementation of Partition Algorithm with BOINC
	3 Results of the Experiments
	4 Conclusion and Discussion
	References

	Task Scheduling in a Desktop Grid to Minimize the Server Load
	1 Introduction
	2 The Model
	3 Performance of a Volunteer Computing System
	References

	An HPC Upgrade/Downgrade that Provides Workload Stability
	1 Introduction
	2 Stability of an HPC Workload Model
	3 An Upgrade/Downgrade Problem
	4 Numerical Experiments
	4.1 CTC SP2 Cluster
	4.2 OSC Cluster

	5 Conclusion
	References

	Job Ranking and Scheduling in Utility Grids VOs
	Abstract
	1 Introduction
	2 Related Works
	3 Job Framework Forming
	3.1 Job Batch Size Restrictions
	3.2 Job and Computing Environment Compatibility Indicator

	4 Simulation Studies
	5 Summary
	Acknowledgements
	References

	Congestion Elimination on Data Storages Network Interfaces in Datacenters
	Abstract
	1 Introduction
	2 Replication Procedure
	3 Experimental Investigation of Replication Procedure Efficiency
	4 Conclusion
	References

	Special Processors Programming Techniques
	Use of Xeon Phi Coprocessor for Solving Global Optimization Problems
	Abstract
	1 Introduction
	2 Global Search Algorithm with Parallel Trials
	3 Convergence and Speedup of the Parallel Algorithm
	4 Implementation on Xeon Phi
	5 Results of Numerical Experiments
	6 Conclusions
	Acknowledgements
	References

	Increasing Efficiency of Data Transfer Between Main Memory and Intel Xeon Phi Coprocessor or NVIDIA GPUS with Data Compression
	1 Introduction
	2 Compression Methods
	3 Experiments
	4 Conclusion
	References

	Parallelizing Branch-and-Bound on GPUs for Optimization of Multiproduct Batch Plants
	1 Motivation and Related Work
	2 Problem Formulation
	3 Parallelization for GPU
	4 Optimizations
	5 Experimental Results
	6 Conclusion
	References

	Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA
	1 Introduction
	2 Related Work
	3 3D Memory Integrated FPGA (3D MI-FPGA)
	3.1 Timing Parameters

	4 2D FFT Architecture
	4.1 1D FFT Kernel
	4.2 Baseline Architecture
	4.3 Optimized Architecture
	4.4 Optimal Dynamic Data Layouts
	4.5 Metrics of Evaluation

	5 Experimental Results
	6 Conclusion
	References

	High-Performance Reconfigurable Computer Systems Based on Virtex FPGAs
	Abstract
	1 Introduction
	2 RCS Based on Xilinx Virtex-7 FPGAs
	3 Next-Generation Reconfigurable Systems Based on Xilinx UltraScale FPGAs
	4 RCS Software
	5 Language COLAMO and Software Complex for Multichip RCS
	6 Conclusion
	References

	Parallelizing Biochemical Stochastic Simulations: A Comparison of GPUs and Intel Xeon Phi Processors
	1 Introduction
	2 Methodology
	2.1 Stochastic Simulation of Biochemical Reaction Networks
	2.2 Graphics Processing Units
	2.3 Many Integrated Core Architecture

	3 Results
	3.1 Experimental Setting
	3.2 Computational Results

	4 Conclusion
	References

	Cost of Bandwidth-Optimized Sparse Mesh Layouts
	1 Introduction
	2 Basics of Layout Structures
	2.1 Setting for Layouts
	2.2 On Cost Metrics

	3 Definitions and Layouts for Mesh-Based Networks
	3.1 Definition of Sparse Meshes
	3.2 Layouts
	3.3 Bandwidth-Optimized 2-Dimensional Meshes and Tori
	3.4 Summary of Properties for Comparison

	4 Comparison
	4.1 Preliminaries
	4.2 Results

	5 Conclusions
	References

	Toward a Core Design to Distribute an Execution on a Manycore Processor
	1 Introduction
	2 Running a C Program in Parallel
	3 ILP in Programs
	4 An Execution Model to Run Programs in Parallel and Its Core Implementation
	4.1 Parallelizing Fetch
	4.2 Core Pipeline Microarchitecture

	5 Analytical Performance Evaluation of the Parallel Execution Model on the sum Example and Conclusion
	References

	Heuristic Algorithms for Optimizing Array Operations in Parallel PGAS-programs
	1 Introduction
	2 Communications Optimization
	2.1 PGAS Model
	2.2 Parallel Reduction Algorithm
	2.3 Arrays Access Optimization

	3 Experiments and Results
	4 Conclusion
	References

	Progressive Transactional Memory in Time and Space
	1 Introduction
	2 Model
	3 TM Classes
	4 Time and Space Complexity of Sequential TMs
	5 RMR Complexity of Strongly Progressive TMs
	5.1 Mutual Exclusion from a Strongly Progressive TM
	5.2 Proof of Correctness

	6 Related Work and Concluding Remarks
	References

	Wavelet-Based Local Mesh Adaptation with Application to Gas Dynamics
	Abstract
	1 Introduction
	2 Mathematical Model
	3 Numerical Method
	4 2D Adaptive Cartesian Mesh
	5 Wavelet-Based Analyzer of Numerical Solutions
	6 WENO-Reconstructions for Adaptive Cartesian Meshes
	7 Results of Numerical Tests
	8 Specifics of Parallel Realization
	9 Conclusions
	References

	On Implementation High-Scalable CFD Solvers for Hybrid Clusters with Massively-Parallel Architectures
	1 Introduction
	2 Numerical Method
	3 Parallel LU-SGS Algorithm
	4 Numerical Experiment
	5 Implementation
	References

	Parallelization of 3D MPDATA Algorithm Using Many Graphics Processors
	1 Introduction
	2 Overview of MPDATA
	3 Adaptation of MPDATA to a Single GPU Node
	3.1 GPU Architecture and Software Environment
	3.2 Processing GPU Kernels
	3.3 Analysis of Stencils
	3.4 Transformations of Stencils
	3.5 Performance Results

	4 Adaptation of MPDATA to GPU-accelerated Clusters
	4.1 MPDATA Decomposition
	4.2 Performance Results

	5 Conclusions and Further Work
	References

	Performance Evaluation of a Human Immune System Simulator on a GPU Cluster
	1 Introduction
	2 Mathematical and Computational Model
	3 GPU Cluster Programming
	4 Numerical Results
	5 Conclusion
	References

	HPC Hardware Efficiency for Quantum and Classical Molecular Dynamics
	1 Introduction
	2 Problem Statement and Benchmarking Metric
	3 Comparison
	4 Conclusions
	References

	Automatic High-Level Programs Mapping onto Programmable Architectures
	1 Introduction
	2 Related Works Overview
	3 The Implementation
	3.1 Structure of the Compiler from C to the Programmable Computational System
	3.2 Mapping Programs onto a Programmable Computer
	3.3 C2HDL Converter and a Multi-pipeline System Generating
	3.4 Optimizing Parallelizing System (OPS)
	3.5 Chip Area Optimizing
	3.6 Efficiency of Parallel Computing Use

	4 A Running Example
	5 Conclusion
	References

	Applications
	Implementation of a Three-Phase Fluid Flow (``Oil-Water-Gas'') Numerical Model in the LuNA Fragmented Programming System
	Abstract
	1 Introduction
	2 The Problem of Filtration
	3 Definition of the Problem
	4 Algorithm of the Solution
	5 LuNA Language and System of Fragmented Programming
	6 Fragmented Algorithm Execution
	7 Performance Tests
	8 Conclusion
	Acknowledgements
	References

	Development of a Distributed Parallel Algorithm of 3D Hydrodynamic Calculation of Oil Production on the Basis of MapReduce Hadoop and MPI Technologies
	Abstract
	1 Physical and Mathematical Models of 3D Problem of Hydrodynamic Calculation of Oil Production
	2 Numerical Model of 3D Problem of Hydrodynamic Calculation of Oil Production
	3 The Distributed Parallel Algorithm on the Basis of MapReduce Hadoop and MPI Technologies
	4 Implementation of the Distributed Parallel Algorithm and Analysis of the Results
	5 Conclusion
	References

	A Two-Level Parallel Global Search Algorithm for Solution of Computationally Intensive Multiextremal Optimization Problems
	Abstract
	1 Introduction
	2 Problem Statement
	3 Parallel Two-Level Global Optimization Algorithm
	3.1 Parallel Computations for Nodes with Shared Memory
	3.2 Parallel Computations for Systems with Distributed Memory

	4 Results of Computational Experiments
	5 Conclusion
	Acknowledgements
	References

	Efficient Parallel Implementation of Coherent Stacking Algorithms in Seismic Data Processing
	1 Introduction
	2 Coherent Summation Method
	3 Mesh Refinement
	4 Hiding Disk Access Operations Behind Computation
	5 Elimination of Recomputing
	6 Loop Vectorization and Avoiding Cache Misses
	7 Parallel Implementation
	8 Conclusion
	References

	Accurate Parallel Algorithm for Tracking Inertial Particles in Large-Scale Direct Numerical Simulations of Turbulence
	1 Introduction
	2 Equations and Numerical Methods
	3 Implementation
	4 Results and Discussion
	References

	Treating Complex Geometries with Cartesian Grids in Problems for Fluid Dynamics
	Abstract
	1 Introduction
	2 Method of Free Boundaries
	3 Numerical Results
	4 Conclusions
	Acknowledgments
	References

	Architecture, Implementation and Performance Optimization in Organizing Parallel Computations for Simulation Environment
	Abstract
	1 Introduction
	2 Computing Core Architecture
	3 Organizing Computations
	4 Performance Optimization
	4.1 Caching
	4.2 Optimizing MPI Data Transfer

	5 Method Library
	5.1 Integration Algorithms
	5.2 New Methods Implementation

	6 Reaction-Diffusion Problem
	7 Conclusion
	Acknowledgements
	References

	Author Index

