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Preface

The PaCT 2015 (Parallel Computing Technologies) conference was a four-day
conference held in Petrozavodsk (Russia). This was the 13th international conference in
the PaCT series. The conferences are held in Russia every odd year. The first con-
ference, PaCT 1991, was held in Novosibirsk (Academgorodok), September 7–11,
1991. The next PaCT conferences were held in Obninsk (near Moscow), August 30 to
September 4, 1993; in St. Petersburg, September 12–15, 1995; in Yaroslavl, Septem-
ber, 9–12, 1997; in Pushkin (near St. Petersburg), September, 6–10, 1999; in Aca-
demgorodok (Novosibirsk), September 3–7, 2001; in Nizhni Novgorod, September,
15–19, 2003; in Krasnoyarsk, September 5–9, 2005; in Pereslavl-Zalessky, September
3–7, 2007; in Novosibirsk, August 31 – September 4, 2009; in Kazan, September
19–23, 2011, and in St. Petersburg, September 30 to October 4, 2013. Since 1995 all
the PaCT proceedings are published by Springer in the LNCS series. PaCT 2015 was
jointly organized by the Institute of Computational Mathematics and Mathematical
Geophysics (Russian Academy of Sciences), Novosibirsk State University, Novosi-
birsk State Technical University, Institute of Applied Mathematical Research (Karelian
Research Centre of Russian Academy of Sciences), and Petrozavodsk State University.
The aim of the conference is to give an overview of new developments, applications,
and trends in parallel computing technologies. We sincerely hope that the conference
will help our community to deepen its understanding of parallel computing technolo-
gies by providing a forum for an exchange of views between scientists and specialists
from all over the world. The conference attracted 87 participants from around the
world, with authors from 13 countries submitting papers. Of these, 53 papers were
selected for the conference as regular ones; there was also an invited speaker. All the
papers were reviewed by at least three referees. Many thanks to our sponsors: the
Ministry of Education and Science, Russian Academy of Sciences, and Russian Fund
for Basic Research.

September 2015 Victor Malyshkin
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Abstract. Development of new HPC architectures proceeds faster than
the corresponding adjustment of the algorithms for such fundamental
mathematical models as quantum and classical molecular dynamics.
There is the need for clear guiding criteria for the computational effi-
ciency of a particular model on a particular hardware. LINPACK bench-
mark alone can no longer serve this role. In this work we consider a
practical metric of the time-to-solution versus the computational peak
performance of a given hardware system. In this metric we compare dif-
ferent hardware for the CP2K and LAMMPS software packages widely
used for atomistic modeling. The metric considered can serve as a uni-
versal unambiguous scale that ranges different types of supercomputers.

1 Introduction

The continuing rapid development of theoretical and computational methods of
atomistic simulations during past decades provides a basis of analysis and predic-
tion tools for chemistry, material science, condensed matter physics, molecular
biology and nanotechnology. Nowadays molecular dynamics (MD) method that
describes motion of individual atoms by the Newton’s equations is a research
tool of highest importance. The computational speed and the efficiency of par-
allelization are the main factors that pose limitations on the length and time
scales accessible for MD models (the achievable extremes for classical MD are
trillions of atoms [4] and milliseconds [12], a typical MD step being 1 fs).

A researcher working in the field of atomistic simulation is an end user of
the complex and high performance software and hardware. The main technical
question is to find a solution as fast as possible, that is to select appropriate
HPC resources and to use them in a most efficient way [14].

In this work we consider a wide-spread type of supercomputer systems com-
prised of identical nodes and interconnected by a high speed network. Due to
the rapid development of hardware, at the moment there is a wide spectrum of
node types that can combine several CPUs and accelerators (e.g. GPU, MIC or
FPGA). The interconnect architecture spectrum dominated previously by the
fat tree and torus topologies has been enriched by the dragonfly and flattened
butterfly topologies, the PERCS topology etc.
c⃝ Springer International Publishing Switzerland 2015
V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 469–473, 2015.
DOI: 10.1007/978-3-319-21909-7 45
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We can distinguish critical avenues in the development of high performance
MD models. Quantum MD (QMD) models demonstrate much higher require-
ments to the data communication speed and hence to the interconnect proper-
ties [5,7]. The deployment of hybrid architectures for electronic structure calcu-
lations and quantum MD is not mature enough. Classical MD (CMD) models
are less demanding with respect to data communication. The main limitation in
CMD is the computational complexity of interatomic potentials (e.g. [10,11,13])
that is determined by the performance of supercomputer nodes. Therefore hybrid
architectures of nodes are considered as a major perspective.

2 Problem Statement and Benchmarking Metric

Fundamental mathematical models (QMD and CMD) are well developed and
practically not subjected to changes. HPC hardware architectures change quite
quickly. Algorithms and software couple fundamental mathematical models with
HPC hardware, however they can be adapted to new hardware quite slowly and
therefore the role of legacy software is huge. Having in mind the criterion of the
“time-to-solution” minimization for particular mathematical models we would
like to answer the following questions: What hardware is more efficient if we
use currently available software? What is the efficiency of emerging software
designed for new hardware? And how complicated is this software development?

The LINPACK test can not serve as a tool for benchmarking atomistic
models. More specialized tests have emerged [1,6,9]. Here we use CP2K and
LAMMPS codes as representatives of the best HPC atomistic simulation soft-
ware. Existing benchmarks suites (e.g. [9] and references therein) test the cou-
pling of selected software with hardware and here we follow this route for QMD.
But for CMD we would like to present a wider view: how efficiently mathematical
models are coupled with hardware if we allow software to be tuned.

The “time-to-solution” criterion leads us to the evident choice of a time for
one MD integration step as one parameter for the metric. The second parameter
should characterize the hardware. Usually the number of some abstract process-
ing elements (e.g. cores) is considered. However although this metric serves well
in the weak and strong scaling benchmarks for the given system, it does not allow
to compare essentially different hardware. In order to overcome this problem we
consider the total peak performance Rpeak as a second parameter for the metric
that put on equal footing all HPC hardware under consideration. It is in favor
of this metric that Rpeak is a usual marketing aspect for novel hardware.

3 Comparison

Figure 1 shows the comparison for the standard H2O benchmark for QMD
(CP2K): IBM Regatta 690+ [8], Cray XT3 and XT5 [15], IBM BlueGene/P [2]
and K-100 cluster of Keldysh Institute of Applied Mathematics in Moscow (64
nodes connected by Infiniband QDR, each node with 2 six-core Intel Xeon X5670
and 3 NVidia Fermi C2050).
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Fig. 1. Water model benchmarks with CP2K for various supercomputers (32-2048
water molecules). Numbers show how many nodes are used to run the benchmark.
Dashed lines show ideal speed-up t ∼ R−1

peak.

For benchmarks with several nodes different supercomputers demonstrate
close performance (in seconds per MD step). For large models this agreement
is better. In the case of 512 molecules we see that the combination of hardware
with compilers provides the same level of efficiency.

The role of the interconnect becomes evident in the multi-node cases where
the speed-up worsens. Fat-tree systems show better performance for small model
sizes. Torus interconnects of Cray XT3, XT5 and IBM BlueGene/P provides
superior strong scaling for large system sizes (in accordance with the detailed
analysis for another QMD code SIESTA [3]).

IBM systems show inferior performance in this metric because the fused
multiply-add (FMA) operations supported by IBM PowerPC CPUs play no
essential role for QMD algorithms.

Figure 2 shows the comparison for the standard Lennard-Jones benchmark
for CMD (LAMMPS): pure CPU systems and hybrid systems with NVidia Fermi
X5670, NVidia Kepler K40 and Intel Xeon Phi SE10X.

All the data (old benchmarks1 including) for CPUs without vectorization
follow the same trend (with the exception of IBM PowerPC 440 CPU due to
the FMA issue mentioned above). Manual vectorization with the USER-INTEL
package gives ∼ 2x speed-up. This is the most efficient way among all imple-
mented in LAMMPS to deploy the total peak performance of hardware.

Hybrid nodes with GPUs show inferior timings with respect to CPU-only
nodes when compared by the similar Rpeak. There are three GPU-oriented ver-
sions ofMD algorithms in LAMMPS implemented with NVidia CUDA technology
(introduced in June 2007). The GPU package is the oldest one introduced in the
1st quarter 2010 and developed up to the 3rd quarter of 2013. The USER-CUDA

1 http://lammps.sandia.gov/bench.html.
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Fig. 2. Lennard-Jones liquid benchmarks with LAMMPS. Circles show CPU bench-
marks without vectorization: open circles and crossed circles show Intel Xeon bench-
marks on the “Lomonosov” cluster of Moscow State University and K-100 cluster (their
discrepancy illustrate the precision of the metric deployed), black circles are the legacy
data: 1 – Pentium II 333MHz, 2 – DEC Alpha 500 MHz, 3 – PowerPC 440 700 MHz,
4 – Power4 1.3GHz and 5 – Intel Xeon 3.47 GHz. Boxes correspond to Intel Xeon bench-
marks with USER-INTEL. Triangles show the timings from the “Lomonosov” cluster
using nodes with NVidia GPUs and different algorithms implemented in LAMMPS:
△ – GPU, ∇ – USER-CUDA, ▹ – KOKKOS. Filled triangles are the benchmarks pub-
lished on the LAMMPS web-site. The diamonds are the data for Intel Xeon Phi in the
native mode (the lower diamond corresponds to the KOKKOS package).

package is a newer one introduced in the 3rd quarter 2011. The KOKKOS package
is the most recent introduced in the 2nd quarter 2014 (and it performs essentially
better on the novel NVidia Kepler K40).

Nodes with Intel Xeon Phi (an accelerator that became available in 2012–
2013) in the native mode show more than ∼ 2x speed-up if LAMMPS is used
with the KOKKOS package. However Intel Xeon Phi also shows inferior timings
with respect to CPU-only nodes when compared by the similar Rpeak.

4 Conclusions

We introduced a novel metric “time-to-solution (in seconds) vs Rpeak (in Flops)”
and applied it to representative examples of QMD and CMD. This metric allows
us to compare existing HPC hardware, hybrid systems including.

CP2K shows better strong scaling on supercomputers with torus intercon-
nects and especially on IBM BlueGene/P. LAMMPS performs with the best effi-
ciency on Intel Xeon CPUs with manual vectorization of crucial routines. Since
MD applications do not use FMA operations IBM PowerPC CPUs perform for
these tasks at a fraction of Rpeak.

The example of NVidia GPU shows that porting of an existing package on the
new hardware takes several years (only after ∼ 7 years of development CUDA-
based algorithms have approached CPU algorithms efficiency). After ∼ 3 years
of development classical MD algorithms for Intel Xeon Phi are still not efficient.
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