<div dir="ltr">Hi,<div><br></div><div>guess this fell through the net because it is so general a question that it is impossible to answer in a way that is usefull/but correct in all cases:</div><div><br></div><div>The actual answer is that, at the moment without k-point sampling, your cell needs to be large enough to converge the property you are interested in - in all directions:i.e  a circular answer that is not helpful.</div><div><br></div><div>Crudely if you have at least a cell 1 nm in each direction, you'll probably get something qualitatively reasonable, but the actual size needed will depend on the system and property...</div><div><br></div><div>If you can say what band-gap, dielectric constant and properties you want to calculate, then you might get a better hint. But still you should be happy that your results are well enough converged for your purposes, which means testing yourself, not asking a mailing list. </div><div><br></div><div>Cheers,</div><div><br></div><div>Matt</div><div><br><br>On Monday, September 8, 2014 1:58:26 PM UTC+1, Tobias Kraemer wrote:<blockquote class="gmail_quote" style="margin: 0;margin-left: 0.8ex;border-left: 1px #ccc solid;padding-left: 1ex;"><div dir="ltr">Dear all, <br><br><br>I have a question regarding the correct choice of system size. I guess this is also aiming at a more general understanding <br>on how periodic DFT works. When is it important to expand the single unit cell to a supercell?? In my particular case I am <br>studying a molecular crystal containing an organometallic fragment (a rhodium complex) embedded in cavities spanned by<br>the counterion (the BArF4- borate anion). There are essentially 4 asymmetric units in the unit cell (4 cation/anion pairs)<br>In another, but related, system there are only two of these asymmetric units involved. So how are the interactions between<br>fragments at the boundary of the unit cell described? Since I am setting up the calculations as PERIODIC XYZ, am I getting<br>away with just using the unit cell? Are all the interactions due to the presence of the <i>neighboring </i>cells in each direction<br>automatically taken into account? In particular, here in this system each cation in the crystal is surrounded by 6 counterions <br>(which form kind of an octahedral cavity), but of course in the unit cell each cation has only half (=3) anions in its vicinity.<br>I suspect that I might have to use a supercell to describe the system properly, but what would be a good size?<br>In the other case mentioned, there are only 2 asymmetric units present in the unit cell, and I wonder if I would introduce <br>some sort of "size-error" into the calculations, which might make a comparison between the two different crystal systems difficult.<br>I have attached the xyz for one system for reference. <br><br>A second question, is it generally better to fully relax the complete cell or is a geometry optimization suffcient.<br><br><br>Thanks for your help, much appreciated<br><br><br>Tobias <br></div></blockquote></div></div>