<div dir="ltr">Dear all CP2K users,<br><br>I am trying to optimize a Graphene Quantum Dot using BLYP-DFT-D3/DZVP method as implemented in CP2K. While optimizing I have observed that,  SCF energy is decreasing (i.e. becoming more negative) at the beginning of the run, but after few outer-SCF loops, the energy starts increasing and the increment is going on and on if I am leaving the system to run. <br><br>Also, I have observed that the inner-SCF energy has reached a convergence (for this system) value  of ~ 10^(-5) after 2 outer-SCF cycles  (where my EPS_SCF is 1.0E-6) and after the beginning of the 3rd outer-SCF tolerance has increased to a value of ~ 10^(-3). <br><br>I would like to get your suggestions on any way to avoid this convergence issue. The input file and the output file (just before and after the 2nd outer-SCF) are given below (hopping they may be help you in suggesting).<br><br>Thank you all,<br>Sincerely,<br>Sharma.<br><br>P.S: I have checked in the mailing list but I couldn't exactly found any post on this issue (though there are on BOMD-energy increment etc.)<br><br><div style="text-align: center;"><u><span style="color: rgb(0, 0, 255);"><b>Input_file:</b></span></u><br></div><br><span style="color: rgb(0, 0, 255);">&FORCE_EVAL<br><br>  METHOD Quickstep<br><br>  &DFT<br><br>    CHARGE = 0 <br>    MULTIPLICITY = 2<br>    LSD # for odd number of electrons and specifying this keyword itself enforces for spin-polarized calculations<br><br>    BASIS_SET_FILE_NAME  BASIS_MOLOPT<br>    POTENTIAL_FILE_NAME  GTH_POTENTIALS<br><br>    &MGRID<br>      CUTOFF 320<br>      NGRIDS 5 <br>      REL_CUTOFF 40<br>    &END MGRID<br><br>    &QS<br>      METHOD GPW<br>      EPS_DEFAULT 1.0E-10<br>    &END QS<br><br>    &SCF<br><br>      SCF_GUESS RESTART<br>      EPS_SCF 1.0E-6<br>      MAX_SCF 100<br><br>      &OUTER_SCF<br>        EPS_SCF 1.0E-6<br>        MAX_SCF 500<br>      &END<br><br>      &OT<br>        MINIMIZER CG<br>        PRECONDITIONER FULL_ALL<br>        ENERGY_GAP 0.001<br>        STEPSIZE 0.05<br>      &END<br><br>    &END SCF<br><br>    &XC<br><br>      &XC_FUNCTIONAL BLYP <br>      &END XC_FUNCTIONAL<br><br>      &XC_GRID<br>        XC_DERIV  SPLINE2<br>        XC_SMOOTH_RHO NN50<br>      &END XC_GRID<br><br>      &vdW_POTENTIAL<br><br>        DISPERSION_FUNCTIONAL PAIR_POTENTIAL # POTENTIAL_TYPE is alias to DISPERSION_FUNCTIONAL<br> <br><br>        &PAIR_POTENTIAL<br>          TYPE DFTD3<br>          PARAMETER_FILE_NAME  dftd3.dat <br>          REFERENCE_FUNCTIONAL BLYP <br>        &END PAIR_POTENTIAL<br><br>      &END vdW_POTENTIAL<br><br>    &END XC<br><br>    &POISSON<br>      POISSON_SOLVER WAVELET<br>      PERIODIC NONE<br>    &END POISSON<br><br>  &END DFT<br><br>  &SUBSYS<br><br>    &CELL <br>      ABC 38.0 38.0 38.0<br>      ALPHA_BETA_GAMMA  90.0 90.0 90.00<br>      PERIODIC NONE<br>    &END CELL<br><br>    &TOPOLOGY<br>      &CENTER_COORDINATES<br>      &END<br>    &END<br><br>    &COORD<br>     @INCLUDE gqd_270.xyz<br>    &END COORD<br><br>    &KIND H<br>      BASIS_SET DZVP-MOLOPT-SR-GTH<br>      POTENTIAL GTH-BLYP-q1<br>    &END KIND<br><br>    &KIND C<br>      BASIS_SET DZVP-MOLOPT-SR-GTH<br>      POTENTIAL GTH-BLYP-q4<br>    &END KIND<br><br>    &KIND N<br>      BASIS_SET DZVP-MOLOPT-SR-GTH<br>      POTENTIAL GTH-BLYP-q5<br>    &END KIND<br><br>  &END SUBSYS<br><br>&END FORCE_EVAL<br><br>&GLOBAL<br>  PROJECT au20_tetra_on_n-gqd<br>  RUN_TYPE GEO_OPT <br>  PRINT_LEVEL MEDIUM<br>&END GLOBAL<br><br>&MOTION<br>  &GEO_OPT<br>    OPTIMIZER BFGS <br>    MAX_ITER   5000<br>    MAX_FORCE  1.00D-4 <br>    TYPE MINIMIZATION<br>  &END<br><br>&END MOTION<br><br>###########################################################################################################################<br><span style="color: rgb(255, 0, 0);"><u><b><br></b></u></span></span><div style="text-align: center;"><span style="color: rgb(255, 0, 0);"><u><b>OUTPUT-FILE:</b></u></span></div><br><span style="color: rgb(255, 0, 0);"><br>    98 OT LS       0.54E-01    6.9                    -1982.8376246687<br><br>  Trace(PS):                                 1174.9999638412<br>  Electronic density on regular grids:      -1174.9999638398        0.0000361602<br>  Core density on regular grids:             1174.9999998887       -0.0000001113<br>  Total charge density on r-space grids:        0.0000360489<br>  Total charge density g-space grids:           0.0000360489<br><br>    99 OT CG       0.54E-01   12.3     0.00000845     -1982.8383595833 -7.61E-05<br><br>  Trace(PS):                                 1174.9999635922<br>  Electronic density on regular grids:      -1174.9999635907        0.0000364093<br>  Core density on regular grids:             1174.9999998887       -0.0000001113<br>  Total charge density on r-space grids:        0.0000362980<br>  Total charge density g-space grids:           0.0000362980<br><br>   100 OT LS       0.22E+00    6.9                    -1982.8383813757<br><br>  *** SCF run NOT converged ***<br><br><br>  Electronic density on regular grids:      -1174.9999635907        0.0000364093<br>  Core density on regular grids:             1174.9999998887       -0.0000001113<br>  Total charge density on r-space grids:        0.0000362980<br>  Total charge density g-space grids:           0.0000362980<br><br>  Overlap energy of the core charge distribution:               0.00005046108667<br>  Self energy of the core charge distribution:              -4271.91259980407449<br>  Core Hamiltonian energy:                                   1351.88408937624945<br>  Hartree energy:                                            1448.17384258600623<br>  Exchange-correlation energy:                               -510.06161737575133<br>  Dispersion energy:                                           -0.92214661917833<br><br>  Total energy:                                             -1982.83838137566136<br><br>  outer SCF iter =    3 RMS gradient =   0.84E-05 energy =      -1982.8383813757<br><br>  ----------------------------------- OT ---------------------------------------<br><br>  Allowing for rotations:  F<br>  Optimizing orbital energies:  F<br>  Minimizer      : CG                  : conjugate gradient<br>  Preconditioner : FULL_ALL            : diagonalization, state selective<br>  Precond_solver : DEFAULT<br>  Line search    : 2PNT                : 2 energies, one gradient<br>  stepsize       :    0.05000000<br>  energy_gap     :    0.00100000<br><br>  eps_taylor     :   0.10000E-15<br>  max_taylor     :             4<br><br>  mixed_precision    : F<br><br>  ----------------------------------- OT ---------------------------------------<br><br>  Step     Update method      Time    Convergence         Total energy    Change<br>  ------------------------------------------------------------------------------<br><br>  Trace(PS):                                 1174.9999628452<br>  Electronic density on regular grids:      -1174.9999628438        0.0000371562<br>  Core density on regular grids:             1174.9999998887       -0.0000001113<br>  Total charge density on r-space grids:        0.0000370449<br>  Total charge density g-space grids:           0.0000370449<br><br>     1 OT CG       0.50E-01   24.7     0.00073898     -1982.8383578477  1.74E-06<br><br>  Trace(PS):                                 1174.6089204778<br>  Electronic density on regular grids:      -1174.6089204763        0.3910795237<br>  Core density on regular grids:             1174.9999998887       -0.0000001113<br>  Total charge density on r-space grids:        0.3910794124<br>  Total charge density g-space grids:           0.3910794124<br><br>     2 OT LS       0.16E-01    6.8                    -1982.7669389193<br><br>  Trace(PS):                                 1174.8781005916<br>  Electronic density on regular grids:      -1174.8781005901        0.1218994099<br>  Core density on regular grids:             1174.9999998887       -0.0000001113<br>  Total charge density on r-space grids:        0.1218992986<br>  Total charge density g-space grids:           0.1218992986<br><br>     3 OT CG       0.16E-01   12.3     0.00075231     -1982.7595972134  7.88E-02</span><br><br><br><br><br><br></div>