
Using Multiple Walkers in the built-in Metadynamics module

Multiple Walkers.
The usage of multiple walkers can be extremely useful for speeding-up the filling of the Free Energy
Surfaces.
The implementation available in CP2K relies on communication via file.

The idea is to allocate a large amount of processor split in several groups (via FARMING) and each
group will run an independent metadynamic. Every CT metadynamic step all the walker (independently)
will try to read information on the status of the other walkers. If possible, they will acquire the hills,
which have been spawned by the other walkers, merge them with their own hills and continuing the
exploration of the free energy surface.

Needed Information.

Every walkers need to know its personal ID, the number of total walkers and the files where
the walkers will dump information on the "local" metadynamic run.

Input file structure.

@SET ROOT /tmp/teo/
@INCLUDE 'my_force_eval.inc'&MOTION
 &MD
 ENSEMBLE NVT
 STEPS 5000
 TIMESTEP 0.5
 TEMPERATURE 300.0
 &THERMOSTAT
 REGION MASSIVE
 &NOSE
 LENGTH 3
 YOSHIDA 3
 TIMECON 1000.
 MTS 2
 &END NOSE
 &END
 &END MD
 &PRINT
 &RESTART
 &EACH
 MD 100
 &END
 &END
 &TRAJECTORY
 &EACH
 MD 20
 &END
 &END
 &VELOCITIES OFF
 &END
 &END

 &FREE_ENERGY
 &METADYN
 NT_HILLS 40
 WW 1.0E-3
 &METAVAR
 SCALE 0.02
 COLVAR 1
 &END METAVAR
 &MULTIPLE_WALKERS
 NUMBER_OF_WALKERS <NW>
 WALKER_ID <ID>
 &WALKERS_FILE_NAME
@INCLUDE ../map_walker.inc
 &END
 &END
 &PRINT
 &COLVAR
 COMMON_ITERATION_LEVELS 4
 &EACH
 METADYNAMICS 1
 &END
 &END
 &HILLS OFF
 &END
 &END
 &END METADYN
 &END
&END MOTION

In the above input template the metadynamic part of the is in red. Yellow-highlighted is the part specific
to the multiple walkers.
Normally, you could substitute the <NW> with the total number of walkers, <ID> with the ID counter of
the local walker and add
a file with all the file names (together with the proper path) used by the walkers to dump hills
information (which will be read by the rest of the walkers pool).
Using this script will allow you to setup automatically all those variables.
Follow these instructions:

1. Create a working directory for your project (~>mkdir my_project)
2. Create a template file: template.MW (the one above is a good starting point.. don't forget to add

your force_eval section and to specify properly the COLVAR and the METAVAR in the
&SUBSYS section and in the &METADYN section). The template file should be called
template.MW. Leave the MULTIPLE_WALKERS section according the setup above. Don't
specify <NW>, <ID> or the walkers file name in the input.. the script will take care of them
directly.

3. run the script : ./get_walk.csh 32 ; where 32 is the number of walker that you want
4. The script will generate 32 directories (containing the properly setup input file for each walker)

and the input file for the farming..
5. Run the farming input file..

Note

It is important when running multiple walkers to start each walker from different point in the phase
space. To this aim I would recommend to run first an equilibration MD and save the restart file (in a
number equal to the walkers) every a certain amount of time. In case several basins are already
known, the walkers should ideally start also from these points.

http://groups.google.com/group/cp2k/web/get_walk.csh
http://groups.google.com/group/cp2k/web/get_walk.csh
http://groups.google.com/group/cp2k/web/get_walk.csh

General info.

• Communication via file may not be an optimal choice (due to the high IO), but allows (up to 256
tested walkers) for an optimal scalability and was chosen mostly for its simplicity of
implementation. According on the IO capabilities of the machine even smaller number
of walkers (128 or 64) may overload the IO system. So care should be taken when deciding for
the right number of walkers.

• The file layer communication allows for an extremely independent execution of the runs. This
means that if any of the walker should fail during metadynamics the other walkers would
continue anyway.

• Restarting metadynamics with multiple walkers is as easy as restarting a
standard metadynamics. In fact, when additional hills coming from other walkers are read,
they are merged with the local hills and they are dumped in the restart of each walker. It is
therefore enough to restart metadynamics in the usual way. An additional keyword
(RESTART_WALKERS) can disable the restart of the walkers information in case of changing
the number of walkers or failures of 1 walkers during the run.

	Multiple Walkers.
	Needed Information.
	Input file structure.
	Note

	General info.

