<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-15">
</head>
<body bgcolor="#ffffff" text="#000000">
Dear all,
<br>
I am trying to simulate with CP2K-Quickstep a magnetic surface, in
particular
<br>
a slab of 4 layers of Ni(111).
<br>
I have not manage to converge the system. Here are my
considerations:
<br>
<br>
-) the two dimensional cell is not large (5x5), and I tried
hexagonal and rectangular
<br>
two-dimensiional cells. Since no k-points are considered in CP2K, I
know that
<br>
this cell is rather small, and in order to have converged properties
one should
<br>
use a larger one.
<br>
-) I used the mixing/diagonalization options suggested for metallic
surfaces
<br>
(recent message from Marcella Iannuzzi on the 4th October).
<br>
-) I tried to vary the ALPHA,BETA,NBROYDEN parameters. I also tried
to use
<br>
direct mixing+DIIS scheme. Things did not change much.
<br>
-) I managed to converge the system only with OT scheme, but
although I converge
<br>
the system up to 10<sup class="moz-txt-sup">-7</sup>, the results
does not seem to me converged to the ground state,
<br>
since the magnetic moments of different atoms in the same layer are
not the same,
<br>
while they should be due to symmetric reasons.
<br>
<br>
I made a step back and converged an isolated Ni(111) monolayer, and
in that
<br>
case managed to converge with OT but also with standard
diagonalization+broyden
<br>
mixing, and with the latter scheme I was able to reach always a
converged system
<br>
in terms of equal magnetic moments for all the atoms.
<br>
<br>
I both case (ML and 4 layers slab) I set a multiplicity which is
reasonable
<br>
considering the total moment in the cell that the system should
acquire
<br>
(in case of the ML, I varied also the multiplicity and found the one
giving the
<br>
ground state, while for the 4 layers slab I set it to a reasonable
value,
<br>
could easily be it is not the ground state one).
<br>
<br>
My questions are:
<br>
<br>
1) Are there chances that increasing the two-dimensional cell
dimensions,
<br>
convergence will be reached also for the slab?
<br>
Before trying I would like to have an opinion on that; in other
words, could the dimension
<br>
of the two-dimensional cell be the responsible of the missing
convergence with
<br>
diagonalization+broyden techniques?
<br>
<br>
2) Have anybody ever managed to converged a magnetic surface with
this code?
<br>
<br>
Here is a typical input file I used:
<br>
<br>
&GLOBAL
<br>
ᅵ PROJECTᅵ ./working
<br>
ᅵ RUN_TYPE ENERGY_FORCE
<br>
ᅵ PRINT_LEVEL MEDIUM
<br>
&END GLOBAL
<br>
&FORCE_EVAL
<br>
ᅵ METHOD Quickstep
<br>
&DFT
<br>
ᅵᅵᅵ BASIS_SET_FILE_NAMEᅵ ./BASIS_MOLOPT
<br>
ᅵᅵᅵ POTENTIAL_FILE_NAMEᅵ ./GTH_POTENTIALS
<br>
ᅵᅵᅵ RESTART_FILE_NAME ./working-RESTART.wfn
<br>
ᅵᅵᅵ LSD T
<br>
ᅵᅵᅵ MULTIPLICITY 71
<br>
&MGRID
<br>
ᅵᅵᅵᅵᅵ CUTOFF 500
<br>
ᅵᅵᅵᅵᅵ NGRIDS 5
<br>
&END MGRID
<br>
&QS
<br>
ᅵᅵᅵᅵᅵ EXTRAPOLATION PS
<br>
ᅵᅵᅵᅵᅵ EXTRAPOLATION_ORDER 3
<br>
&END QS
<br>
&SCF
<br>
ᅵᅵᅵᅵᅵ SCF_GUESS restart
<br>
ᅵᅵᅵᅵᅵ EPS_SCF 1.0E-7
<br>
ᅵᅵᅵᅵᅵ MAX_SCF 500
<br>
&OUTER_SCF ON
<br>
ᅵᅵᅵᅵᅵᅵᅵ MAX_SCF 20
<br>
ᅵᅵᅵᅵᅵᅵᅵ EPS_SCFᅵ 1.0E-7
<br>
&END OUTER_SCF
<br>
ᅵᅵᅵᅵᅵ ADDED_MOS 1000
<br>
&SMEAR ON
<br>
ᅵᅵᅵᅵᅵᅵᅵ METHOD FERMI_DIRAC
<br>
ᅵᅵᅵᅵᅵᅵᅵ ELECTRONIC_TEMPERATURE [K] 300
<br>
&END SMEAR
<br>
&DIAGONALIZATION ON
<br>
ᅵᅵᅵᅵᅵᅵᅵ ALGORITHM STANDARD
<br>
&END DIAGONALIZATION
<br>
&MIXING ON
<br>
ᅵᅵᅵᅵᅵᅵᅵ METHOD BROYDEN_MIXING
<br>
ᅵᅵᅵᅵᅵᅵᅵ ALPHAᅵᅵ 0.05
<br>
ᅵᅵᅵᅵᅵᅵᅵ BETAᅵᅵᅵ 1.5
<br>
ᅵᅵᅵᅵᅵᅵᅵ NBROYDENᅵ 8
<br>
&END MIXING
<br>
&END SCF
<br>
&XC
<br>
&VDW_POTENTIAL
<br>
ᅵᅵᅵᅵᅵᅵᅵ POTENTIAL_TYPE PAIR_POTENTIAL
<br>
&PAIR_POTENTIAL
<br>
ᅵᅵᅵᅵᅵᅵᅵᅵᅵ REFERENCE_FUNCTIONAL PBE
<br>
ᅵᅵᅵᅵᅵᅵᅵᅵᅵ TYPE DFTD3
<br>
ᅵᅵᅵᅵᅵᅵᅵᅵᅵ PARAMETER_FILE_NAME ./dftd3.dat
<br>
&END PAIR_POTENTIAL
<br>
&END VDW_POTENTIAL
<br>
&XC_FUNCTIONAL
<br>
&PBE
<br>
&END PBE
<br>
&END XC_FUNCTIONAL
<br>
&XC_GRID
<br>
&END XC_GRID
<br>
&END XC
<br>
&END DFT
<br>
&SUBSYS
<br>
&CELL
<br>
ᅵᅵᅵᅵᅵ PERIODIC XY
<br>
ᅵᅵᅵᅵᅵ ABC 12.45416482 12.45416482 40
<br>
ᅵᅵᅵᅵᅵ ANGLES 90 90 120
<br>
&END CELL
<br>
&COORD
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵᅵ 2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵᅵ 4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵ -4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵ -2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵᅵ 2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵ -4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 3.736249ᅵᅵᅵ -2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 3.736249ᅵᅵᅵᅵ 2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵᅵ 4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 7.472499ᅵᅵᅵ -4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 6.227082ᅵᅵᅵ -2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -6.227082ᅵᅵᅵᅵ 2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -7.472499ᅵᅵᅵᅵ 4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵ -4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -3.736249ᅵᅵᅵ -2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -3.736249ᅵᅵᅵᅵ 2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵᅵ 4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵ -4.314249ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵ -2.157125ᅵᅵᅵᅵ 7.797460
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 1.438083ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵᅵ 3.595208ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 3.736250ᅵᅵᅵ -5.033291ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵ -2.876166ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 1.245417ᅵᅵᅵ -0.719042ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵᅵ 1.438083ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 1.245417ᅵᅵᅵᅵ 3.595208ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 6.227082ᅵᅵᅵ -5.033291ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵ -2.876166ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 3.736250ᅵᅵᅵ -0.719042ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵᅵ 1.438083ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 3.736250ᅵᅵᅵᅵ 3.595208ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 8.717915ᅵᅵᅵ -5.033291ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 7.472499ᅵᅵᅵ -2.876166ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 6.227082ᅵᅵᅵ -0.719042ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵᅵ 1.438083ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -6.227082ᅵᅵᅵᅵ 3.595208ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵ -5.033291ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵ -2.876166ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -3.736249ᅵᅵᅵ -0.719042ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵᅵ 1.438083ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -3.736249ᅵᅵᅵᅵ 3.595208ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 1.245417ᅵᅵᅵ -5.033291ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵ -2.876166ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵ -0.719042ᅵᅵᅵᅵ 9.831216
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵᅵ 0.719042ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -0.000000ᅵᅵᅵᅵ 2.876166ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -1.245417ᅵᅵᅵᅵ 5.033291ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 3.736249ᅵᅵᅵ -3.595208ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵ -1.438083ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 3.736249ᅵᅵᅵᅵ 0.719042ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵᅵ 2.876166ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵᅵ 5.033291ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 6.227082ᅵᅵᅵ -3.595208ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵ -1.438083ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -6.227082ᅵᅵᅵᅵ 0.719042ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -7.472499ᅵᅵᅵᅵ 2.876166ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -8.717915ᅵᅵᅵᅵ 5.033291ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -3.736250ᅵᅵᅵ -3.595208ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵ -1.438083ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -3.736250ᅵᅵᅵᅵ 0.719042ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵᅵ 2.876166ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -6.227082ᅵᅵᅵᅵ 5.033291ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -1.245417ᅵᅵᅵ -3.595208ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵ -1.438083ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -1.245417ᅵᅵᅵᅵ 0.719042ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵᅵ 2.876166ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -3.736250ᅵᅵᅵᅵ 5.033291ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵ -3.595208ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵ -0.000000ᅵᅵᅵ -1.438083ᅵᅵᅵ 11.864973
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 0.000000ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵᅵ 2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵᅵ 4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵ -4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵ -2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵᅵ 0.000000ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 1.245416ᅵᅵᅵᅵ 2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵᅵ 4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵ -4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 3.736249ᅵᅵᅵ -2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 4.981666ᅵᅵᅵᅵ 0.000000ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 3.736249ᅵᅵᅵᅵ 2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 2.490833ᅵᅵᅵᅵ 4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 7.472499ᅵᅵᅵ -4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 6.227082ᅵᅵᅵ -2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵᅵ 0.000000ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -6.227082ᅵᅵᅵᅵ 2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -7.472499ᅵᅵᅵᅵ 4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵ -4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -3.736249ᅵᅵᅵ -2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -2.490833ᅵᅵᅵᅵ 0.000000ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -3.736249ᅵᅵᅵᅵ 2.157125ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -4.981666ᅵᅵᅵᅵ 4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵᅵ 0.000000ᅵᅵᅵ -4.314249ᅵᅵᅵ 13.898730
<br>
Niᅵᅵᅵ -1.245416ᅵᅵᅵ -2.157125ᅵᅵᅵ 13.898730
<br>
&END COORD
<br>
&KIND Ni
<br>
ᅵᅵᅵᅵᅵ POTENTIAL GTH-PBE-q18
<br>
ᅵᅵᅵᅵᅵ BASIS_SET DZVP-MOLOPT-SR-GTH
<br>
&END KIND
<br>
&END SUBSYS
<br>
&END FORCE_EVAL
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</body>
</html>