Matthias,<br><br>  By only specifying "ROKS" with "OT", should I obtain the first excited state singlet state (S1) or triplet state (T1) ?<br><br>  Thanks.<br><br>Hanning<br><br><br><br><div class="gmail_quote">
On Thu, Apr 30, 2009 at 2:38 AM, Matthias Krack <span dir="ltr"><matth...@psi.ch></span> wrote:<br><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
<br>
Dear Hanning Chen,<br>
<br>
the implementation of low-spin ROKS with diagonalization (ROKS_SCHEME<br>
general) is still experimental and largely incomplete. For instance,<br>
the proper summation over the microstates contributing to a multiplet<br>
is missing. By contrast, the high-spin ROKS with diagonalization<br>
should work which is the default. This is why the result of your ROKS<br>
run did not differ from the RKS result. Alternatively, you may check<br>
the LOW_SPIN_ROKS available with OT.<br>
<br>
Matthias<br>
<div><div></div><div class="h5"><br>
On Apr 30, 5:57 am, Hanning Chen <<a href="mailto:chenh...@gmail.com">chenh...@gmail.com</a>> wrote:<br>
> Dear CP2k community,<br>
>   I performed geometry optimization for C2H4 at first singlet excited state<br>
> (S1) using ROKS, and found that the optimized geometry is exactly same as<br>
> the ground state (S0). Can anyone help me to figure out the way to optimize<br>
> geometry at low-spin excited state? I also ran an geometry optimization at<br>
> first triplet excited state (T1) , and obtained a distinct geometry as<br>
> expected. I guess I might miss some key options in the input file shown<br>
> below.<br>
><br>
> Thanks.<br>
><br>
> Hanning Chen<br>
> Department of Chemistry<br>
> Northwestern University<br>
> Evanston, IL 60208<br>
><br>
> Input file:<br>
><br>
>   &FORCE_EVAL<br>
>   METHOD Quickstep<br>
>   &DFT<br>
>     ROKS<br>
>     MULTIPLICITY 1<br>
>     &QS<br>
>       EPS_DEFAULT 1.0E-8<br>
>     &END QS<br>
>     &SCF<br>
>       MAX_SCF 100<br>
>       SCF_GUESS ATOMIC<br>
>       &DIAGONALIZATION<br>
>        ALGORITHM STANDARD<br>
>       &END DIAGONALIZATION<br>
>     &END SCF<br>
>     &XC<br>
>       &XC_FUNCTIONAL PADE<br>
>       &END XC_FUNCTIONAL<br>
>     &END XC<br>
>   &END DFT<br>
>   &SUBSYS<br>
>     &CELL<br>
>       ABC 6.0 6.0 8.0<br>
>     &END CELL<br>
>     &COORD<br>
>     C         -0.2558206925       -0.0439868417        0.6850619693<br>
>     C         -0.2214915625       -0.0386665897       -0.6514432536<br>
>     H         -0.4100752923        0.8714166677        1.2581094627<br>
>     H         -0.1401850725       -0.9650616559        1.2579495323<br>
>     H         -0.0795226532       -0.9560364450       -1.2252531634<br>
>     H         -0.3528336094        0.8817708920       -1.2228724740<br>
>     &END COORD<br>
>         &KIND H<br>
>       BASIS_SET DZVP-GTH-PADE<br>
>       POTENTIAL GTH-PADE-q1<br>
>     &END KIND<br>
>     &KIND C<br>
>       BASIS_SET DZVP-GTH-PADE<br>
>       POTENTIAL GTH-PADE-q4<br>
>     &END KIND<br>
>   &END SUBSYS<br>
> &END FORCE_EVAL<br>
> &GLOBAL<br>
>   PROJECT C2H4<br>
>   RUN_TYPE GEOMETRY_OPTIMIZATION<br>
>   PRINT_LEVEL MEDIUM<br>
> &END GLOBAL<br>
</div></div><br>
</blockquote></div><br>