Hi,<br><br>I was hoping that I can get some clarification about the scaling in QS. I read through<br>Comp. Phys. Comm. 167 (2005) 103. My background is PW methods.<br><br>There are two ways to obtain the KS ground state in QS:
<br>1. SCF + traditional diagonalization (TD)<br>- The construction of the KS matrix is approximately O(N ln N) < O (N^(1+epsilon))<br>- TD scales as M^3<br>N  is the number of occupied orbitals ??<br>M is the number of basis functions
<br clear="all"><br>Fig. 4 on p. 110 of the article uses N only, instead of M and N. I guess one parameter<br>indicative of system size was used instead of multiple parameters.<br><br>Also, could someone comment on the memory requirement using SCF + TD.
<br><br>2. OT<br>- On p. 117, the text states that in the most optimal situation the method <br>scales as M*N^2 and M^2*N in the worst case (non-sparse) scenario.<br>- The memory scales as O(M*N) which I is also similar to a PW method
<br>but with a localized basis M is substantiall smaller. I imagine the other terms<br>that contribute to the memory scaling, e.g. potential, charge density, etc.<br>are negligible ??<br><br><br><br>-- <br>Nichols A. Romero, 
Ph.D.<br>1613 Denise Dr. Apt. D<br>Forest Hill, MD 21050<br>443-567-8328 (C)<br>410-306-0709 (O)<br>