[CP2K-user] [CP2K:20309] Re: Running cp2k on GPU
'Hemanth Haridas' via cp2k
cp2k at googlegroups.com
Tue Jun 11 15:45:47 UTC 2024
Gromacs requires many other shell variables (which are Gromacs specific)
for specifically running the code on the GPUs. On the other hand, NAMD
(which is another MD code) just requires that you load the required
bindings and use the binary to run the executable. The first case that I
had reported is similar to the case of NAMD (which I had demonstrated that
it does not work). I checked the GPU usage using "nvidia-smi" and observed
that the GPU utilization was 0% and the process was not registered on the
GPU cores, even though the program was running.
Best,
Hemanth
On Tuesday, June 11, 2024 at 9:35:24 AM UTC-6 Johann Pototschnig wrote:
> It doesn't have to be cp2k. Any program that uses GPUs in order to figure
> out the script you need.
>
> srun / mpirun might need additional options:
> https://slurm.schedmd.com/srun.html#OPT_gpu-bind
>
> Otherwise there are some options to get additional information:
> - Since you have OpenMPI you can get more information if you put
> "ompi_info" in your script.
>
> -You can also put "nvidia-smi" in the script to get GPU information:
> https://developer.nvidia.com/system-management-interface
>
> - "echo $CUDA_VISIBLE_DEVICES" should show the GPUs that are visible
>
> Also you can check:
> https://docs.open-mpi.org/en/v5.0.x/tuning-apps/networking/cuda.html
>
> On Tuesday, June 11, 2024 at 4:37:29 PM UTC+2 Hemanth Haridas wrote:
>
>> The script that I used for submitting is reproduced below
>>
>> #!/bin/bash
>>
>> #SBATCH --job-name=LiCl ### Job Name
>>
>> #SBATCH --output=cp2k.out ### File in which to store job
>> output
>>
>> #SBATCH --error=cp2k.err ### File in which to store job
>> error messages
>>
>> #SBATCH --time=3-00:00:00 ### Wall clock time limit in
>> Days-HH:MM:SS
>>
>> #SBATCH --ntasks=64
>>
>> #SBATCH --gres=gpu:1
>>
>> #SBATCH --cpus-per-task=1
>>
>>
>> module load gcc cuda/11.8.0 openmpi/4.1.6-gpu intel-oneapi-mkl/2022.0.2
>>
>>
>> source /cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/setup
>>
>>
>> export* OMP_NUM_THREADS=*$SLURM_NTASKS
>>
>>
>> mpirun -np 1 /cp2k_plumed_gpu/cp2k-2024.1/exe/local_cuda/cp2k.psmp -i
>> colvars.inp -o colvars.out
>>
>>
>> We do not have a version of cp2k installed cluster-wide meaning that I do
>> not have a script that I can compare with.
>> On Tuesday, June 11, 2024 at 5:07:07 AM UTC-6 Johann Pototschnig wrote:
>>
>>> Which GPU bindings did you end up using?
>>>
>>> Did you compare to submission scripts for your cluster for which the GPU
>>> is used?
>>>
>>>
>>> On Monday, June 10, 2024 at 6:31:45 PM UTC+2 Hemanth Haridas wrote:
>>>
>>>> I tried running cp2k as described in the previous email, but the code
>>>> still does not run on the gpu, and the GPU usage is still zero.
>>>>
>>>> Sincererly,
>>>> Hemanth
>>>>
>>>> On Friday, June 7, 2024 at 11:02:42 AM UTC-6 Johann Pototschnig wrote:
>>>>
>>>>> For cuda it is rather:
>>>>> https://github.com/tom-papatheodore/hello_jobstep
>>>>>
>>>>> On Friday, June 7, 2024 at 6:52:33 PM UTC+2 Johann Pototschnig wrote:
>>>>>
>>>>>> It links to cuda, there should be no problem, but you are missing the
>>>>>> mpirun / srun:
>>>>>>
>>>>>> mpirun -n 1 -x OMP_NUM_THREADS=$... /cp2k_plumed_gpu/cp2k-2024.1/exe/local_cuda/cp2k.psmp
>>>>>> -i colvars.inp -o colvars.out
>>>>>>
>>>>>>
>>>>>> depending on your system there might be additional options for
>>>>>> mpirun/srun necessary.
>>>>>>
>>>>>> The following program can help to figure out bindings:
>>>>>> https://code.ornl.gov/olcf/hello_jobstep
>>>>>>
>>>>>> On Friday, June 7, 2024 at 5:18:47 PM UTC+2 Hemanth Haridas wrote:
>>>>>>
>>>>>>> CC =
>>>>>>> /gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/bin/mpicc
>>>>>>>
>>>>>>> CXX =
>>>>>>> /gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/bin/mpic++
>>>>>>>
>>>>>>> AR = ar -r
>>>>>>>
>>>>>>> FC =
>>>>>>> /gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/bin/mpifort
>>>>>>>
>>>>>>> LD =
>>>>>>> /gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/bin/mpifort
>>>>>>>
>>>>>>> #
>>>>>>>
>>>>>>> DFLAGS = -D__OFFLOAD_CUDA -D__DBCSR_ACC -D__LIBXSMM
>>>>>>> -D__parallel -D__MKL -D__FFTW3 -D__SCALAPACK -D__LIBINT -D__LIBXC
>>>>>>> -D__LIBGRPP -D__GSL -D__PLUMED2 -D__SPGLIB -D__OFFLOAD_GEMM -D__SPLA
>>>>>>>
>>>>>>> #
>>>>>>>
>>>>>>> WFLAGS = -Werror=aliasing -Werror=ampersand
>>>>>>> -Werror=c-binding-type -Werror=intrinsic-shadow -Werror=intrinsics-std
>>>>>>> -Werror=line-truncation -Werror=tabs -Werror=target-lifetime
>>>>>>> -Werror=underflow -Werror=unused-but-set-variable -Werror=unused-variable
>>>>>>> -Werror=unused-dummy-argument -Werror=unused-parameter -Werror=unused-label
>>>>>>> -Werror=conversion -Werror=zerotrip -Wno-maybe-uninitialized
>>>>>>> -Wuninitialized -Wuse-without-only
>>>>>>>
>>>>>>> #
>>>>>>>
>>>>>>> FCDEBFLAGS = -fbacktrace -ffree-form -fimplicit-none -std=f2008
>>>>>>>
>>>>>>> CFLAGS = -fno-omit-frame-pointer -fopenmp -g -mtune=native -O3
>>>>>>> -funroll-loops $(PROFOPT)
>>>>>>> -I/gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/include
>>>>>>> -pthread -m64
>>>>>>> -I/gcc-8.5.0/intel-oneapi-mkl-2023.2.0-etwucm5d3s2qu7eiuaaxastbiukj2ori/mkl/2023.2.0/include
>>>>>>> -I/gcc-8.5.0/intel-oneapi-mkl-2023.2.0-etwucm5d3s2qu7eiuaaxastbiukj2ori/mkl/2023.2.0/include/fftw
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libint-v2.6.0-cp2k-lmax-5/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxc-6.2.2/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libgrpp-main-20231215/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxsmm-1.17/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/gsl-2.7/include'
>>>>>>> -I/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/spglib-1.16.2/include
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/SpLA-1.5.5/include/spla'
>>>>>>> -std=c11 -Wall -Wextra -Werror -Wno-vla-parameter
>>>>>>> -Wno-deprecated-declarations $(DFLAGS)
>>>>>>> -I/gcc-8.5.0/cuda-11.8.0-3wlxktsbgw2ui4wvdnsy7w7xyxlkkwju/include
>>>>>>>
>>>>>>> FCFLAGS = -fno-omit-frame-pointer -fopenmp -g -mtune=native -O3
>>>>>>> -funroll-loops $(PROFOPT)
>>>>>>> -I/gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/include
>>>>>>> -pthread -m64
>>>>>>> -I/gcc-8.5.0/intel-oneapi-mkl-2023.2.0-etwucm5d3s2qu7eiuaaxastbiukj2ori/mkl/2023.2.0/include
>>>>>>> -I/gcc-8.5.0/intel-oneapi-mkl-2023.2.0-etwucm5d3s2qu7eiuaaxastbiukj2ori/mkl/2023.2.0/include/fftw
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libint-v2.6.0-cp2k-lmax-5/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxc-6.2.2/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libgrpp-main-20231215/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxsmm-1.17/include'
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/gsl-2.7/include'
>>>>>>> -I/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/spglib-1.16.2/include
>>>>>>> -I'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/SpLA-1.5.5/include/spla'
>>>>>>> $(FCDEBFLAGS) $(WFLAGS) $(DFLAGS)
>>>>>>>
>>>>>>> CXXFLAGS = -O2 -fPIC -fno-omit-frame-pointer -fopenmp -g
>>>>>>> -march=native -mtune=native --std=c++14 $(DFLAGS)
>>>>>>> -Wno-deprecated-declarations
>>>>>>> -I/gcc-8.5.0/cuda-11.8.0-3wlxktsbgw2ui4wvdnsy7w7xyxlkkwju/include
>>>>>>>
>>>>>>> #
>>>>>>>
>>>>>>> LDFLAGS = $(FCFLAGS) -Wl,--enable-new-dtags -pthread
>>>>>>> -L/gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/lib
>>>>>>> -L/gcc-8.5.0/ucx-1.14.0-cupo7hrn2exqqwfyatdigeuiiqijaulw/lib -L/uufs/
>>>>>>> chpc.utah.edu/sys/spack/v019/linux-rocky8-x86_64/gcc-8.5.0/zlib-1.2.13-dcpzngybj4fisn6ojapnels3yfwcxqgk/lib
>>>>>>> -Wl,-rpath
>>>>>>> -Wl,/gcc-8.5.0/openmpi-4.1.6-chhfokbbf3fbb2t4uo7ns4ukaripskzj/lib
>>>>>>> -Wl,-rpath -Wl,/gcc-8.5.0/ucx-1.14.0-cupo7hrn2exqqwfyatdigeuiiqijaulw/lib
>>>>>>> -Wl,-rpath -Wl,/gcc-8.5.0/zlib-1.2.13-dcpzngybj4fisn6ojapnels3yfwcxqgk/lib
>>>>>>>
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libint-v2.6.0-cp2k-lmax-5/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxc-6.2.2/lib'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxc-6.2.2/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libgrpp-main-20231215/lib'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libgrpp-main-20231215/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxsmm-1.17/lib'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/libxsmm-1.17/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/gsl-2.7/lib'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/gsl-2.7/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/plumed-2.9.0/lib'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/plumed-2.9.0/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/spglib-1.16.2/lib'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/spglib-1.16.2/lib'
>>>>>>> -L'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/SpLA-1.5.5/lib/cuda'
>>>>>>> -Wl,-rpath,'/cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/SpLA-1.5.5/lib/cuda'
>>>>>>> -L'/gcc-8.5.0/cuda-11.8.0-3wlxktsbgw2ui4wvdnsy7w7xyxlkkwju/targets/x86_64-linux/lib'
>>>>>>> -Wl,-rpath,'/gcc-8.5.0/cuda-11.8.0-3wlxktsbgw2ui4wvdnsy7w7xyxlkkwju/targets/x86_64-linux/lib'
>>>>>>> -L'/usr/lib64' -Wl,-rpath,'/usr/lib64'
>>>>>>>
>>>>>>> LDFLAGS_C =
>>>>>>>
>>>>>>> LIBS = -lspla -lsymspg -l:libplumed.a -ldl -lstdc++ -lz -ldl
>>>>>>> -lgsl -lxsmmf -lxsmm -ldl -lpthread -llibgrpp -lxcf03 -lxc -lint2
>>>>>>> -lmpi_cxx -lmpi
>>>>>>> -L/gcc-8.5.0/intel-oneapi-mkl-2023.2.0-etwucm5d3s2qu7eiuaaxastbiukj2ori/mkl/2023.2.0/lib/intel64
>>>>>>> -Wl,-rpath,/gcc-8.5.0/intel-oneapi-mkl-2023.2.0-etwucm5d3s2qu7eiuaaxastbiukj2ori/mkl/2023.2.0/lib/intel64
>>>>>>> -lmkl_scalapack_lp64 -Wl,--start-group -lmkl_gf_lp64 -lmkl_sequential
>>>>>>> -lmkl_core -lmkl_blacs_openmpi_lp64 -Wl,--end-group -lpthread -lm -ldl
>>>>>>> -lstdc++ -lcudart -lnvrtc -lcuda -lcufft -lcublas -lrt
>>>>>>>
>>>>>>> #
>>>>>>>
>>>>>>> GPUVER = A100
>>>>>>>
>>>>>>> OFFLOAD_CC = nvcc
>>>>>>>
>>>>>>> OFFLOAD_FLAGS = -g -arch sm_80 -O3 -allow-unsupported-compiler
>>>>>>> -Xcompiler='-fopenmp -Wall -Wextra -Werror' --std=c++11 $(DFLAGS)
>>>>>>>
>>>>>>> OFFLOAD_TARGET = cuda
>>>>>>>
>>>>>>> #
>>>>>>>
>>>>>>> FYPPFLAGS = -n --line-marker-format=gfortran5
>>>>>>> On Friday, June 7, 2024 at 1:51:34 AM UTC-6 Johann Pototschnig wrote:
>>>>>>>
>>>>>>>> Can you provide the local_cuda.psmp file which you find in the
>>>>>>>> arch folder?
>>>>>>>>
>>>>>>>> On Thursday, June 6, 2024 at 9:10:38 PM UTC+2 Hemanth Haridas wrote:
>>>>>>>>
>>>>>>>>> I am trying to run CP2K on a linux cluster with GPU support. I
>>>>>>>>> have successfully complied the code with CUDA support. But the utilization
>>>>>>>>> of GPU is zero, even though the program is running , meaning that the code
>>>>>>>>> is running on cpu cores.
>>>>>>>>>
>>>>>>>>> This is the script that I am using to run cp2k
>>>>>>>>>
>>>>>>>>> #!/bin/bash
>>>>>>>>>
>>>>>>>>> #SBATCH --job-name=LiCl ### Job Name
>>>>>>>>>
>>>>>>>>> #SBATCH --output=cp2k.out ### File in which to store
>>>>>>>>> job output
>>>>>>>>>
>>>>>>>>> #SBATCH --error=cp2k.err ### File in which to store
>>>>>>>>> job error messages
>>>>>>>>>
>>>>>>>>> #SBATCH --time=3-00:00:00 ### Wall clock time limit
>>>>>>>>> in Days-HH:MM:SS
>>>>>>>>>
>>>>>>>>> #SBATCH --ntasks=64
>>>>>>>>>
>>>>>>>>> #SBATCH --gres=gpu:1
>>>>>>>>>
>>>>>>>>> #SBATCH --cpus-per-task=1
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> module load gcc cuda/11.8.0 openmpi/4.1.6-gpu intel-oneapi-mkl/
>>>>>>>>> 2022.0.2
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> source /cp2k_plumed_gpu/cp2k-2024.1/tools/toolchain/install/setup
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> export* OMP_NUM_THREADS=*$SLURM_NTASKS
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> /cp2k_plumed_gpu/cp2k-2024.1/exe/local_cuda/cp2k.psmp -i
>>>>>>>>> colvars.inp -o colvars.out
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> Are there any additional flags that I need to use to run the code
>>>>>>>>> on GPUs?
>>>>>>>>>
>>>>>>>>
--
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+unsubscribe at googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/6decace8-842a-4cb9-a3aa-fab4dd07f564n%40googlegroups.com.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20240611/5b0d581f/attachment-0001.htm>
More information about the CP2K-user
mailing list