[CP2K-user] [CP2K:19474] Re: super slow total dipole calculation for Mg2+ compared to Zn2+

Emma Rossi emma.rossi.1 at studenti.unipd.it
Mon Nov 6 10:31:51 UTC 2023


Dear Dr. Krack,

please find  below the text of the first mail of this conversation, where I
explained the problem.



*Dear developers and CP2K users,*
*I'm running AIMD simulations and computing the total dipole moment of a 15
A cubic box (Berry phase approach) containing water molecules, a phosphate
chain (-4) and a divalent cation, either Zn2+ or Mg2+. *
*For Mg2+, the convergence of the MOs localization process at each step is
tremendously slower (one/two order of magnitude) compared to the box with
Zn2+. I cannot figure out the reason of such behaviour. I use the default
setting for the LOCALIZE section, which employs the JACOBI method.*


*The -2 net charge of the system is counterbalanced by uniform background.
600 Ry cutoff for the auxiliary PW expansion of the electron density (500
or 400 Ry are used in the literature for Zn2+ and Mg2+ respectively) and
BLYP XC are used. DZVP-MOLOPT-SR-GTH-q10 and DZVP-MOLOPT-SR-GTH-q12 are
used for Mg2+ and Zn2+ respectively.  *






































































































































































































































*I observe a similar slowdown of the MOs localization speed when I use Na+
atoms to counterbalance the -2 charge of the system containing Zn2+.Here a
typical input file follows. &GLOBAL   PRINT_LEVEL  LOW   PROJECT_NAME MD
 RUN_TYPE  MD &END GLOBAL &MOTION   &MD     ENSEMBLE  NVT     STEPS  100
 TIMESTEP     0.5      TEMPERATURE     3.0000000000000000E+02     TEMP_TOL
    5.0000000000000000E+01     &THERMOSTAT       TYPE  CSVR       &CSVR
     TIMECON     2.4999999999999996E+01       &END CSVR     &END
THERMOSTAT   &END MD &END MOTION &FORCE_EVAL   METHOD  QS   &DFT
 BASIS_SET_FILE_NAME BASIS_MOLOPT     POTENTIAL_FILE_NAME GTH_POTENTIALS
 CHARGE  -2     &SCF       MAX_SCF  100       EPS_SCF
4.9999999999999998E-07       SCF_GUESS  RESTART       &OT  T
 MINIMIZER  DIIS         PRECONDITIONER  FULL_KINETIC       &END OT
 &END SCF     &MGRID       CUTOFF     6.0000000000000000E+02     &END
MGRID     &XC       DENSITY_CUTOFF     1.0000000000000000E-10
 GRADIENT_CUTOFF     1.0000000000000000E-10       TAU_CUTOFF
1.0000000000000000E-10       &XC_GRID         XC_SMOOTH_RHO  NN10
 XC_DERIV  SPLINE2_SMOOTH       &END XC_GRID       &XC_FUNCTIONAL
 NO_SHORTCUT         &BECKE88  T         &END BECKE88         &LYP  T
   &END LYP       &END XC_FUNCTIONAL       &VDW_POTENTIAL
 &PAIR_POTENTIAL           R_CUTOFF     8.0000000000000000E+00
 TYPE  DFTD3(BJ)           PARAMETER_FILE_NAME dftd3.dat
 REFERENCE_FUNCTIONAL BLYP           EPS_CN     1.0000000000000000E-02
     CALCULATE_C9_TERM  T           REFERENCE_C9_TERM  T
 LONG_RANGE_CORRECTION  T         &END PAIR_POTENTIAL       &END
VDW_POTENTIAL     &END XC     &LOCALIZE  T       &PRINT
 &TOTAL_DIPOLE  ON           FILENAME =totdipole           PERIODIC  T
     &EACH             MD  1           &END EACH         &END TOTAL_DIPOLE
     &END PRINT     &END LOCALIZE   &END DFT   &SUBSYS     &CELL       A
  1.5460000000000001E+01    0.0000000000000000E+00
 0.0000000000000000E+00       B     0.0000000000000000E+00
 1.5460000000000001E+01    0.0000000000000000E+00       C
0.0000000000000000E+00    0.0000000000000000E+00    1.5460000000000001E+01
     MULTIPLE_UNIT_CELL  1 1 1     &END CELL     &KIND O       BASIS_SET
DZVP-MOLOPT-GTH-q6       POTENTIAL GTH-BLYP-q6     &END KIND     &KIND H
   BASIS_SET DZVP-MOLOPT-GTH-q1       POTENTIAL GTH-BLYP-q1     &END KIND
   &KIND C       BASIS_SET DZVP-MOLOPT-GTH-q4       POTENTIAL GTH-BLYP-q4
   &END KIND     &KIND P       BASIS_SET DZVP-MOLOPT-GTH-q5       POTENTIAL
GTH-BLYP-q5     &END KIND     &KIND Na       BASIS_SET
DZVP-MOLOPT-SR-GTH-q9       POTENTIAL GTH-BLYP-q9     &END KIND     &KIND
Mg       BASIS_SET DZVP-MOLOPT-SR-GTH-q10       POTENTIAL GTH-BLYP-q10
 &END KIND     &TOPOLOGY       NUMBER_OF_ATOMS  384
 MULTIPLE_UNIT_CELL  1 1 1     &END TOPOLOGY   &END SUBSYS &END
FORCE_EVALHere a piece of the file.out concerning the localization is
reported ENSEMBLE TYPE                =
         NVT STEP NUMBER                  =
           48740 TIME [fs]                    =
        24370.000000 CONSERVED QUANTITY [hartree] =
     -0.234908827385E+04
INSTANTANEOUS             AVERAGES CPU TIME [s]                 =
           220.24                29.11 ENERGY DRIFT PER ATOM [K]    =
  -0.274167730955E+04  -0.106732023761E+04 POTENTIAL ENERGY[hartree]    =
      -0.235022491736E+04  -0.234811418791E+04 KINETIC ENERGY [hartree]
=          0.530388799833E+00   0.547854613121E+00 TEMPERATURE [K]
     =                     291.529
 301.129 *************************** Number of electrons:
                                    1070 Number of occupied orbitals:
                                         535 Number of molecular orbitals:
                                              535 Number of orbital
functions:                                               3012 Number of
independent orbital functions:
3012 Extrapolation method: ASPC SCF WAVEFUNCTION OPTIMIZATION
----------------------------------- OT
---------------------------------------  Minimizer      : DIIS
   : direct inversion                                         in the
iterative subspace                                         using   7 DIIS
vectors                                         safer DIIS on
Preconditioner : FULL_KINETIC        : inversion of T + eS  Precond_solver
: DEFAULT  stepsize       :    0.15000000                  energy_gap     :
   0.20000000  eps_taylor     :   0.10000E-15                  max_taylor
  :             4  ----------------------------------- OT
---------------------------------------  Step     Update method      Time
 Convergence         Total energy    Change
------------------------------------------------------------------------------
   1 OT DIIS     0.15E+00    4.9     0.00001365     -2350.2265786077
-2.35E+03     2 OT DIIS     0.15E+00    7.0     0.00000785
-2350.2266129356 -3.43E-05     3 OT DIIS     0.15E+00    7.0     0.00000667
    -2350.2266281036 -1.52E-05     4 OT DIIS     0.15E+00    7.0
0.00000316     -2350.2266318502 -3.75E-06     5 OT DIIS     0.15E+00    7.1
    0.00000285     -2350.2266340790 -2.23E-06     6 OT DIIS     0.15E+00
 7.0     0.00000168     -2350.2266355491 -1.47E-06     7 OT DIIS
0.15E+00    7.1     0.00000158     -2350.2266365271 -9.78E-07     8 OT DIIS
    0.15E+00    7.0     0.00000079     -2350.2266370647 -5.38E-07     9 OT
DIIS     0.15E+00    7.1     0.00000054     -2350.2266374235 -3.59E-07
10 OT DIIS     0.15E+00    7.0     0.00000041     -2350.2266374897
-6.63E-08  * SCF run converged in    10 steps *  Electronic density on
regular grids:      -1069.9999984366        0.0000015634  Core density on
regular grids:             1067.9999999649       -0.0000000351  Total
charge density on r-space grids:       -1.9999984716  Total charge density
g-space grids:          -1.9999984716  Overlap energy of the core charge
distribution:               0.00000352123302  Self energy of the core
charge distribution:              -6058.29367128599642  Core Hamiltonian
energy:                                   1758.83041225385932  Hartree
energy:                                            2514.80853697306702
Exchange-correlation energy:
-565.57191895188691  Total energy:
    -2350.22663748972354 LOCALIZE| The spread relative to a set of orbitals
is computed LOCALIZE| Orbitals to be localized: All orbitals LOCALIZE| If
fractional occupation, fully occupied MOs are those           within
occupation tolerance of       0.00000001 LOCALIZE| Spread defined by the
Berry phase operator LOCALIZE| Optimal unitary transformation generated by
Jacobi algorithm   Eigenvalues of the occupied subspace spin
 1 ---------------------------------------------      -2.77340522
-1.55519360     -1.55401616     -1.55312686      -0.84401306
-0.81554322     -0.80702571     -0.80237237      -0.80085752
-0.79902548     -0.79112340     -0.79067760      -0.78889214
-0.78844561     -0.78745096     -0.78661985      -0.78594483
-0.78398619     -0.78359896     -0.78223867      -0.78202387
-0.78089859     -0.77900446     -0.77831838      -0.77761721
-0.77700210     -0.77677871     -0.77654095      -0.77610461
-0.77529141     -0.77482833     -0.77403370[.......]      -0.09177880
-0.09168157     -0.09118981     -0.09045276      -0.09027640
-0.08911508     -0.08871380     -0.08817562      -0.08660485
-0.08624312     -0.08399649     -0.08220911      -0.07894380
-0.07429071     -0.06779908 Fermi Energy [eV] :   -1.844907 LOCALIZATION|
Computing localization properties for OCCUPIED ORBITALS. Spin:  1    Spread
Functional     sum_in -w_i ln(|z_in|^2)    sum_in w_i(1-|z_in|^2)
Initial Spread (Berry) :            203183.2008851338    34522.9346453651
  Localization by iterative distributed Jacobi rotation
  Iteration            Functional         Tolerance   Time
          100        1035.1444747551       0.7611E-01   0.145
              200        1035.1439265702       0.2374E-01   0.145
                  300        1035.1438285431       0.2086E-01   0.145
                      400        1035.1437772042       0.1457E-01   0.155
                          500        1035.1437553092       0.8452E-02
0.146                            600        1035.1437479886
0.4565E-02   0.156                            700        1035.1437457665
    0.2413E-02   0.144                            800
 1035.1437451192       0.1268E-02   0.155                            900
     1035.1437449348       0.6661E-03   0.155
 1000        1035.1437448830       0.3497E-03   0.156
     1100        1035.1437448685       0.1836E-03   0.169    Localization
 for spin   1 converged in   1195 iterations    Spread Functional
sum_in -w_i ln(|z_in|^2)    sum_in w_i(1-|z_in|^2)    Total Spread (Berry)
:                1051.8315283360     1035.1437448646*


*To check the role of the localization method in such problem, I ran two
single point calculations, the first using the JACOBI method and the second
using the CRAZY method to compute the total dipole. The latter makes the
process even slower.  *


*I would be very grateful if any of you could give me any insight.*


*Best regards,Emma Rossi *


Then, as Marcella suggested, I checked the Band gap and the Wannier
orbitals of the system of triphosphate and Mg to identify any weird
results. However, the Wannier centers as well as the band gap were ok.
After this attempt, I followed your suggestions on the cutoff for the
elctron density, and I reported the results in the e-mail I sent you this
mornig.

Hope I have summed up the problem.
In case you need further clarifications from my side about the problem,
just let me know.

Thank you very much.

Best regards,
Emma Rossi

Il giorno lun 6 nov 2023 alle ore 11:25 Krack Matthias <
matthias.krack at psi.ch> ha scritto:

> Dear Emma
>
>
>
> Without the full case showing the problem, it is difficult to provide
> further hints.
>
>
>
> Best
>
>
>
> Matthias
>
>
>
> *From: *cp2k at googlegroups.com <cp2k at googlegroups.com> on behalf of Emma
> Rossi <emma.rossi.1 at studenti.unipd.it>
> *Date: *Monday, 6 November 2023 at 11:00
> *To: *cp2k at googlegroups.com <cp2k at googlegroups.com>
> *Subject: *Re: [CP2K:19470] Re: super slow total dipole calculation for
> Mg2+ compared to Zn2+
>
> Dear Dr. Krack,
>
>
>
> thank you for your reply.
>
>
>
> I tested different cutoffs ranging from 1200 to 2200 Ry, but I cannot
> observe any improvement in the speed of the MOs localization procedure.
>
> I tried also GAPW with 1200 Ry instead of GPW, which is the default, since
> I've read that it had been suggested on this google group for a similar
> problem with Na+.
>
>
>
> It seems that the problem does not depend on the details of the electronic
> structure settings for Mg2+.
>
>
>
> I attached some graphs of the iterations needed to converge the dipole in
> the different tests I did. Hope this might help.
>
>
>
> 1)TEST 1 : Mg2+ DIIS, 1200 RY, JACOBI vs Zn2+ DIIS, 600 Ry, JACOBI
>
> 2)TEST 2: Mg2+ DIIS, JACOBI, 1200-2200 Ry (fixed maximum computing time)
>
> 3) TEST 3: Mg2+ DIIS, JACOBI, 1200 Ry GPW vs.GAPW. (fixed maximum
> computing time)
>
>
>
>
>
> Thank you again for your availability in discussing.
>
>
>
> Best regards,
>
> Emma Rossi
>
>
>
> Il giorno gio 2 nov 2023 alle ore 16:29 Krack Matthias <
> matthias.krack at psi.ch> ha scritto:
>
> Dear Emma
>
>
>
> The electronic structure of Mg(2+) (2s2 2p6) and Zn(2+) (3d10) is anything
> than similar. The very great hardness of the Mg-q10 pseudopotential, as
> already noted by Marcella, has been discussed several times on this forum.
> It requires with GPW cutoff values of 1200 Ry or larger for converged
> forces.
>
>
>
> HTH
>
>
>
> Matthias
>
>
>
> *From: *cp2k at googlegroups.com <cp2k at googlegroups.com> on behalf of Emma
> Rossi <emma.rossi.1 at studenti.unipd.it>
> *Date: *Thursday, 2 November 2023 at 15:55
> *To: *cp2k at googlegroups.com <cp2k at googlegroups.com>
> *Subject: *Re: [CP2K:19451] Re: super slow total dipole calculation for
> Mg2+ compared to Zn2+
>
> Dear Marcella,
>
>
>
> I checked the Wannier centers of the system and they are properly
> localized.
>
> I tried running the dynamics also with 800 Ry cutoff (vs. 600 Ry used
> previously), CG minimization algorithm for the wfn (vs. DIIS ) and  CRAZY
> method (vs. JACOBI) for the calculation of the dipole moment. These
> settings do not improve the situation.
>
>
>
> I cannot figure out the reason why the localization of the total dipole
> moment for Mg2+ requires many more iterations per step compared to Zn2+.
> These metals have very similar electronic structure, 10 and 12 valence
> electrons respectively, and using the same level of theory, the calculation
> for the two takes very different time scales.
>
> I'm going to compute both the band gap and the Wannier centers also for
> the system with Zn2+, just to compare.
>
>
>
> Thank you for your suggestions and any further discussions are highly
> appreciated.
>
>
>
> Best regards,
>
> Emma Rossi
>
>
>
>
>
> Il giorno mar 24 ott 2023 alle ore 17:51 Marcella Iannuzzi <
> marci.akira at gmail.com> ha scritto:
>
>
>
>
>
> Dear Emma,
>
>
>
> If the MOS are localised the Wannier centers are also available and the
> coordinates can be printed by activating the related print_key
>
> ·         WANNIER_CENTERS
> <https://manual.cp2k.org/trunk/CP2K_INPUT/FORCE_EVAL/DFT/LOCALIZE/PRINT/WANNIER_CENTERS.html>
>
> Regards
>
> Marcella
>
>
>
> On Tuesday, October 24, 2023 at 5:34:27 PM UTC+2 Emma Rossi wrote:
>
> Dear Marcella,
>
>
>
> Thank you very much for your reply.
>
>
>
> Actually, I’m using the Berry phase approach to compute the total dipole
> of the simulation box, thus I have not Wannier centres from my calculations
> at the moment.
>
>
>
> I tried several keywords for the minimisation of the wavefunction on
> single point calculations in gas phase. Conjugate Gradient in combination
> with the FULL_ALL preconditioner seems to speed up the calculation compared
> to DIIS and FULL_KINETIC preconditioner. I’ll try to use these
>
> settings for the MD in bulk.
>
>
>
> Using larger cutoffs for the electron density makes the calculations even
> slower.
>
>
>
> Concerning the band gap, I’ll check whether experimental data are
> available in the literature to assess the accuracy of my calculations.
>
>
>
> Thank you again for your hints.
>
>
>
> Best ragards,
>
> Emma Rossi
>
>
>
>
>
> Il giorno ven 20 ott 2023 alle 12:49 Marcella Iannuzzi <marci... at gmail.com>
> ha scritto:
>
>
>
>
>
> Dear Emma,
>
>
>
> Both Mg and Na have quite hard functions in the basis set, it might be
> that the cutoff of 600 Ry is not sufficient.
>
> Have you checked  whether the electronic structure is OK (e.g. energy gap)
> ?
>
> Often the localisation algorithm shows convergence problems when there are
> intrinsically very delocalised  states (see metals).
>
> Maybe this is not the problem though. Are the Wannier centres after
> localisation at the expected positions ?
>
>
>
> Regards
>
> Marcella
>
>
>
>
>
>
>
> On Friday, October 20, 2023 at 11:09:48 AM UTC+2 Emma Rossi wrote:
>
> Dear developers and CP2K users,
>
> I'm running AIMD simulations and computing the total dipole moment of a 15
> A cubic box (Berry phase approach) containing water molecules, a phosphate
> chain (-4) and a divalent cation, either Zn2+ or Mg2+.
>
> For Mg2+, the convergence of the MOs localization process at each step is
> tremendously slower (one/two order of magnitude) compared to the box with
> Zn2+. I cannot figure out the reason of such behaviour. I use the default
> setting for the LOCALIZE section, which employs the JACOBI method.
>
>
>
> The -2 net charge of the system is counterbalanced by uniform background.
> 600 Ry cutoff for the auxiliary PW expansion of the electron density (500
> or 400 Ry are used in the literature for Zn2+ and Mg2+ respectively) and
> BLYP XC are used. DZVP-MOLOPT-SR-GTH-q10 and DZVP-MOLOPT-SR-GTH-q12 are
> used for Mg2+ and Zn2+ respectively.
>
>
>
> I observe a similar slowdown of the MOs localization speed when I use Na+
> atoms to counterbalance the -2 charge of the system containing Zn2+.
>
> Here a typical input file follows.
>
>  &GLOBAL
>    PRINT_LEVEL  LOW
>    PROJECT_NAME MD
>    RUN_TYPE  MD
>  &END GLOBAL
>  &MOTION
>    &MD
>      ENSEMBLE  NVT
>      STEPS  100
>      TIMESTEP     0.5
>      TEMPERATURE     3.0000000000000000E+02
>      TEMP_TOL     5.0000000000000000E+01
>      &THERMOSTAT
>        TYPE  CSVR
>        &CSVR
>          TIMECON     2.4999999999999996E+01
>        &END CSVR
>      &END THERMOSTAT
>    &END MD
>  &END MOTION
>  &FORCE_EVAL
>    METHOD  QS
>    &DFT
>      BASIS_SET_FILE_NAME BASIS_MOLOPT
>      POTENTIAL_FILE_NAME GTH_POTENTIALS
>      CHARGE  -2
>      &SCF
>        MAX_SCF  100
>        EPS_SCF     4.9999999999999998E-07
>        SCF_GUESS  RESTART
>        &OT  T
>          MINIMIZER  DIIS
>          PRECONDITIONER  FULL_KINETIC
>        &END OT
>      &END SCF
>      &MGRID
>        CUTOFF     6.0000000000000000E+02
>      &END MGRID
>      &XC
>        DENSITY_CUTOFF     1.0000000000000000E-10
>        GRADIENT_CUTOFF     1.0000000000000000E-10
>        TAU_CUTOFF     1.0000000000000000E-10
>        &XC_GRID
>          XC_SMOOTH_RHO  NN10
>          XC_DERIV  SPLINE2_SMOOTH
>        &END XC_GRID
>        &XC_FUNCTIONAL  NO_SHORTCUT
>          &BECKE88  T
>          &END BECKE88
>          &LYP  T
>          &END LYP
>        &END XC_FUNCTIONAL
>        &VDW_POTENTIAL
>          &PAIR_POTENTIAL
>            R_CUTOFF     8.0000000000000000E+00
>            TYPE  DFTD3(BJ)
>            PARAMETER_FILE_NAME dftd3.dat
>            REFERENCE_FUNCTIONAL BLYP
>            EPS_CN     1.0000000000000000E-02
>            CALCULATE_C9_TERM  T
>            REFERENCE_C9_TERM  T
>            LONG_RANGE_CORRECTION  T
>          &END PAIR_POTENTIAL
>        &END VDW_POTENTIAL
>      &END XC
>
>
>
>
>
>
>
>
>
>
> *     &LOCALIZE  T        &PRINT          &TOTAL_DIPOLE  ON
>  FILENAME =totdipole            PERIODIC  T            &EACH
>  MD  1            &END EACH          &END TOTAL_DIPOLE        &END PRINT
>    &END LOCALIZE*
>    &END DFT
>    &SUBSYS
>      &CELL
>        A     1.5460000000000001E+01    0.0000000000000000E+00
>  0.0000000000000000E+00
>        B     0.0000000000000000E+00    1.5460000000000001E+01
>  0.0000000000000000E+00
>        C     0.0000000000000000E+00    0.0000000000000000E+00
>  1.5460000000000001E+01
>        MULTIPLE_UNIT_CELL  1 1 1
>      &END CELL
>      &KIND O
>        BASIS_SET DZVP-MOLOPT-GTH-q6
>        POTENTIAL GTH-BLYP-q6
>      &END KIND
>      &KIND H
>        BASIS_SET DZVP-MOLOPT-GTH-q1
>        POTENTIAL GTH-BLYP-q1
>      &END KIND
>      &KIND C
>        BASIS_SET DZVP-MOLOPT-GTH-q4
>        POTENTIAL GTH-BLYP-q4
>      &END KIND
>      &KIND P
>        BASIS_SET DZVP-MOLOPT-GTH-q5
>        POTENTIAL GTH-BLYP-q5
>      &END KIND
>      &KIND Na
>        BASIS_SET DZVP-MOLOPT-SR-GTH-q9
>        POTENTIAL GTH-BLYP-q9
>      &END KIND
>      &KIND Mg
>        BASIS_SET DZVP-MOLOPT-SR-GTH-q10
>        POTENTIAL GTH-BLYP-q10
>      &END KIND
>      &TOPOLOGY
>        NUMBER_OF_ATOMS  384
>        MULTIPLE_UNIT_CELL  1 1 1
>      &END TOPOLOGY
>    &END SUBSYS
>  &END FORCE_EVAL
>
> Here a piece of the *file.out* concerning the *localization* is reported
>
>  ENSEMBLE TYPE                =
>    NVT
>  STEP NUMBER                  =
>  48740
>  TIME [fs]                    =
> 24370.000000
>  CONSERVED QUANTITY [hartree] =
>  -0.234908827385E+04
>
>                                               INSTANTANEOUS
> AVERAGES
>  CPU TIME [s]                 =                      220.24
>  29.11
>  ENERGY DRIFT PER ATOM [K]    =         -0.274167730955E+04
>  -0.106732023761E+04
>  POTENTIAL ENERGY[hartree]    =         -0.235022491736E+04
>  -0.234811418791E+04
>  KINETIC ENERGY [hartree]     =          0.530388799833E+00
> 0.547854613121E+00
>  TEMPERATURE [K]              =                     291.529
>  301.129
>  ***************************
>
>
>  Number of electrons:
>   1070
>  Number of occupied orbitals:
>    535
>  Number of molecular orbitals:
>   535
>
>  Number of orbital functions:
>   3012
>  Number of independent orbital functions:
>   3012
>
>  Extrapolation method: ASPC
>
>  SCF WAVEFUNCTION OPTIMIZATION
>
>   ----------------------------------- OT
> ---------------------------------------
>   Minimizer      : DIIS                : direct inversion
>                                          in the iterative subspace
>                                          using   7 DIIS vectors
>                                          safer DIIS on
>   Preconditioner : FULL_KINETIC        : inversion of T + eS
>   Precond_solver : DEFAULT
>   stepsize       :    0.15000000                  energy_gap     :
>  0.20000000
>   eps_taylor     :   0.10000E-15                  max_taylor     :
>     4
>   ----------------------------------- OT
> ---------------------------------------
>
>   Step     Update method      Time    Convergence         Total energy
>  Change
>
> ------------------------------------------------------------------------------
>      1 OT DIIS     0.15E+00    4.9     0.00001365     -2350.2265786077
> -2.35E+03
>      2 OT DIIS     0.15E+00    7.0     0.00000785     -2350.2266129356
> -3.43E-05
>      3 OT DIIS     0.15E+00    7.0     0.00000667     -2350.2266281036
> -1.52E-05
>      4 OT DIIS     0.15E+00    7.0     0.00000316     -2350.2266318502
> -3.75E-06
>      5 OT DIIS     0.15E+00    7.1     0.00000285     -2350.2266340790
> -2.23E-06
>      6 OT DIIS     0.15E+00    7.0     0.00000168     -2350.2266355491
> -1.47E-06
>      7 OT DIIS     0.15E+00    7.1     0.00000158     -2350.2266365271
> -9.78E-07
>      8 OT DIIS     0.15E+00    7.0     0.00000079     -2350.2266370647
> -5.38E-07
>      9 OT DIIS     0.15E+00    7.1     0.00000054     -2350.2266374235
> -3.59E-07
>     10 OT DIIS     0.15E+00    7.0     0.00000041     -2350.2266374897
> -6.63E-08
>
>   * SCF run converged in    10 steps *
>
>
>   Electronic density on regular grids:      -1069.9999984366
>  0.0000015634
>   Core density on regular grids:             1067.9999999649
> -0.0000000351
>   Total charge density on r-space grids:       -1.9999984716
>   Total charge density g-space grids:          -1.9999984716
>
>   Overlap energy of the core charge distribution:
> 0.00000352123302
>   Self energy of the core charge distribution:
>  -6058.29367128599642
>   Core Hamiltonian energy:
> 1758.83041225385932
>   Hartree energy:
>  2514.80853697306702
>   Exchange-correlation energy:
> -565.57191895188691
>
>   Total energy:
> -2350.22663748972354
>
>  LOCALIZE| The spread relative to a set of orbitals is computed
>  LOCALIZE| Orbitals to be localized: All orbitals
>  LOCALIZE| If fractional occupation, fully occupied MOs are those
>            within occupation tolerance of       0.00000001
>  LOCALIZE| Spread defined by the Berry phase operator
>  LOCALIZE| Optimal unitary transformation generated by Jacobi algorithm
>
>   Eigenvalues of the occupied subspace spin            1
>  ---------------------------------------------
>       -2.77340522     -1.55519360     -1.55401616     -1.55312686
>       -0.84401306     -0.81554322     -0.80702571     -0.80237237
>       -0.80085752     -0.79902548     -0.79112340     -0.79067760
>       -0.78889214     -0.78844561     -0.78745096     -0.78661985
>       -0.78594483     -0.78398619     -0.78359896     -0.78223867
>       -0.78202387     -0.78089859     -0.77900446     -0.77831838
>       -0.77761721     -0.77700210     -0.77677871     -0.77654095
>       -0.77610461     -0.77529141     -0.77482833     -0.77403370
> [.......]
>       -0.09177880     -0.09168157     -0.09118981     -0.09045276
>       -0.09027640     -0.08911508     -0.08871380     -0.08817562
>       -0.08660485     -0.08624312     -0.08399649     -0.08220911
>       -0.07894380     -0.07429071     -0.06779908
>  Fermi Energy [eV] :   -1.844907
>
>  LOCALIZATION| Computing localization properties for OCCUPIED ORBITALS.
> Spin:  1
>     Spread Functional     sum_in -w_i ln(|z_in|^2)    sum_in
> w_i(1-|z_in|^2)
>     Initial Spread (Berry) :            203183.2008851338    34522.
> 9346453651 <(934)%20645-3651>
>     Localization by iterative distributed Jacobi rotation
>                       Iteration            Functional         Tolerance
> Time
>                             100        1035.1444747551       0.7611E-01
> 0.145
>                             200        1035.1439265702       0.2374E-01
> 0.145
>                             300        1035.1438285431       0.2086E-01
> 0.145
>                             400        1035.1437772042       0.1457E-01
> 0.155
>                             500        1035.1437553092       0.8452E-02
> 0.146
>                             600        1035.1437479886       0.4565E-02
> 0.156
>                             700        1035.1437457665       0.2413E-02
> 0.144
>                             800        1035.1437451192       0.1268E-02
> 0.155
>                             900        1035.1437449348       0.6661E-03
> 0.155
>                            1000        1035.1437448830       0.3497E-03
> 0.156
>                            1100        1035.1437448685       0.1836E-03
> 0.169
>     Localization  for spin   1 converged in   1195 iterations
>     Spread Functional     sum_in -w_i ln(|z_in|^2)    sum_in
> w_i(1-|z_in|^2)
>     Total Spread (Berry) :                1051.8315283360
> <(831)%20528-3360>     1035.1437448646
>
>
>
> To check the role of the localization method in such problem, I ran two
> single point calculations, the first using the JACOBI method and the second
> using the CRAZY method to compute the total dipole. The latter makes the
> process even slower.
>
>
>
> I would be very grateful if any of you could give me any insight.
>
>
> Best regards,
> Emma Rossi
>
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+uns... at googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/cp2k/a4de3df0-0d85-44ec-8b5f-138082684895n%40googlegroups.com
> <https://groups.google.com/d/msgid/cp2k/a4de3df0-0d85-44ec-8b5f-138082684895n%40googlegroups.com?utm_medium=email&utm_source=footer>
> .
>
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+unsubscribe at googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/cp2k/c33c6c90-df53-4994-9a5b-0370042a0a04n%40googlegroups.com
> <https://groups.google.com/d/msgid/cp2k/c33c6c90-df53-4994-9a5b-0370042a0a04n%40googlegroups.com?utm_medium=email&utm_source=footer>
> .
>
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+unsubscribe at googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/cp2k/CA%2BKefgWy%3DACsrtMuuvASsHAmz1%3DYYWLSYxNLsA4-95RTvXHEEQ%40mail.gmail.com
> <https://groups.google.com/d/msgid/cp2k/CA%2BKefgWy%3DACsrtMuuvASsHAmz1%3DYYWLSYxNLsA4-95RTvXHEEQ%40mail.gmail.com?utm_medium=email&utm_source=footer>
> .
>
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+unsubscribe at googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/cp2k/ZRAP278MB0827CDFBF239657545F9C859F4A6A%40ZRAP278MB0827.CHEP278.PROD.OUTLOOK.COM
> <https://groups.google.com/d/msgid/cp2k/ZRAP278MB0827CDFBF239657545F9C859F4A6A%40ZRAP278MB0827.CHEP278.PROD.OUTLOOK.COM?utm_medium=email&utm_source=footer>
> .
>
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+unsubscribe at googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/cp2k/CA%2BKefgVEiiG%3DU6L%2BgC6RE-H_5iFEgWtSxmiWMf9Oet%2BiG8icXg%40mail.gmail.com
> <https://groups.google.com/d/msgid/cp2k/CA%2BKefgVEiiG%3DU6L%2BgC6RE-H_5iFEgWtSxmiWMf9Oet%2BiG8icXg%40mail.gmail.com?utm_medium=email&utm_source=footer>
> .
>
> --
> You received this message because you are subscribed to the Google Groups
> "cp2k" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to cp2k+unsubscribe at googlegroups.com.
> To view this discussion on the web visit
> https://groups.google.com/d/msgid/cp2k/ZRAP278MB0827C77D71FD8E6B4208D8E9F4AAA%40ZRAP278MB0827.CHEP278.PROD.OUTLOOK.COM
> <https://groups.google.com/d/msgid/cp2k/ZRAP278MB0827C77D71FD8E6B4208D8E9F4AAA%40ZRAP278MB0827.CHEP278.PROD.OUTLOOK.COM?utm_medium=email&utm_source=footer>
> .
>

-- 
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+unsubscribe at googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/CA%2BKefgU0vBLYqrGtjjCRDx4mvKYUeDH5Bbznn6bVHkifE9VDjA%40mail.gmail.com.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20231106/d924e32a/attachment-0001.htm>


More information about the CP2K-user mailing list