[CP2K-user] Machine Learning Force Fields
Nicklas Österbacka
nicklas.... at gmail.com
Fri Jun 18 12:59:26 UTC 2021
n2p2 <https://compphysvienna.github.io/n2p2> implements
Behler-Parinello-style neural network potentials. There is also a plugin
for the MD package QUIP that implements Bartók's kernel-based Gaussian
Approximation Potential <https://libatoms.github.io/GAP/>.
There are plenty more, but those two should give you something to test
things out with and are code-agnostic. You do have to prepare the data set
for training, however. Writing a script to do so should not be particularly
difficult.
Good luck,
Nicklas
fredag 18 juni 2021 kl. 14:33:38 UTC+2 skrev aw... at gmail.com:
> Dear All,
>
> Is there any straighforward way of generating machine learning force
> fields using a CP2K trajectory? I noticed that most of the tools
> available online use VASP or QUANTUM ESPRESSO. I am looking for a tool
> which allows me to construct a force field by training on both energy and
> forces, but the tool needs to be useful for a complete newbie. Any ideas ?
>
> Best wishes,
> Ana
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20210618/e8335c20/attachment.htm>
More information about the CP2K-user
mailing list