[CP2K-user] geometry optimization takes very long time to calculate the Hessian
Marcella Iannuzzi
marci... at gmail.com
Wed Sep 4 07:07:40 UTC 2019
Dear Xiaoming,
Yes it is expected.
Regards
Marcella
On Tuesday, September 3, 2019 at 9:17:17 PM UTC+2, Xiaoming Wang wrote:
>
> Hello,
>
> I am trying to do geo_opt with hybrid functionals and MOLOPT basis. I
> didn't use ADMM.
> I know the calculation without ADMM would be very expensive. But it turned
> out that only
> the first OT step took a longer time, the following steps are relatively
> cheap. However,
> between every two ionic steps, it seems to take very long time to
> calculate the Hessian.
> Is this expected for the current condition? And is there any way to reduce
> the time?
>
>
> Here is part of the output:
>
> OPTIMIZATION STEP: 3
> --------------------------
>
> Spin 1
>
> Number of electrons:
> 865
> Number of occupied orbitals:
> 865
> Number of molecular orbitals:
> 865
>
> Spin 2
>
> Number of electrons:
> 863
> Number of occupied orbitals:
> 863
> Number of molecular orbitals:
> 863
>
> Number of orbital functions:
> 2916
> Number of independent orbital functions:
> 2916
>
> Parameters for the always stable predictor-corrector (ASPC) method:
>
> ASPC order: 1
>
> B(1) = 2.500000
> B(2) = -2.000000
> B(3) = 0.500000
>
> Parameters for the always stable predictor-corrector (ASPC) method:
>
> ASPC order: 1
>
> B(1) = 2.500000
> B(2) = -2.000000
> B(3) = 0.500000
>
> Extrapolation method: ASPC
>
> SCF WAVEFUNCTION OPTIMIZATION
>
> ----------------------------------- OT
> ---------------------------------------
> Allowing for rotations
> Minimizer : CG : conjugate gradient
> Preconditioner : FULL_KINETIC : inversion of T + eS
> Precond_solver : DEFAULT
> Line search : 2PNT : 2 energies, one gradient
> stepsize : 0.15000000 energy_gap :
> 0.00100000
> eps_taylor : 0.10000E-15 max_taylor :
> 4
> ----------------------------------- OT
> ---------------------------------------
>
> Step Update method Time Convergence Total energy
> Change
>
> ------------------------------------------------------------------------------
>
> HFX_MEM_INFO| Est. max. program size before HFX [MiB]:
> 18930
> HFX_MEM_INFO| Number of cart. primitive ERI's calculated:
> 38624794188272
> HFX_MEM_INFO| Number of sph. ERI's calculated:
> 5756863922070
> HFX_MEM_INFO| Number of sph. ERI's stored in-core:
> 5727923021897
> HFX_MEM_INFO| Number of sph. ERI's stored on disk:
> 0
> HFX_MEM_INFO| Number of sph. ERI's calculated on the fly:
> 0
> HFX_MEM_INFO| Total memory consumption ERI's RAM [MiB]:
> 5164770
> HFX_MEM_INFO| Whereof max-vals [MiB]:
> 1233
> HFX_MEM_INFO| Total compression factor ERI's RAM:
> 8.46
> HFX_MEM_INFO| Total memory consumption ERI's disk [MiB]:
> 0
> HFX_MEM_INFO| Total compression factor ERI's disk:
> 0.00
> HFX_MEM_INFO| Size of density/Fock matrix [MiB]:
> 128
> HFX_MEM_INFO| Size of buffers [MiB]:
> 2
> HFX_MEM_INFO| Number of periodic image cells considered:
> 33
> HFX_MEM_INFO| Est. max. program size after HFX [MiB]:
> 18871
>
> 1 OT CG 0.15E+00 337.0 0.00012275 -7323.9604751264
> -7.32E+03
> 2 OT LS 0.77E-01 20.9 -7323.9605963412
> 3 OT CG 0.77E-01 21.3 0.00005254 -7323.9619119441
> -1.44E-03
> 4 OT LS 0.69E-01 21.1 -7323.9621490010
> 5 OT CG 0.69E-01 21.3 0.00003333 -7323.9621521424
> -2.40E-04
> 6 OT LS 0.65E-01 21.0 -7323.9622430025
> 7 OT CG 0.65E-01 21.3 0.00001976 -7323.9622432955
> -9.12E-05
> 8 OT LS 0.58E-01 21.0 -7323.9622712907
> 9 OT CG 0.58E-01 21.2 0.00001132 -7323.9622717428
> -2.84E-05
> 10 OT LS 0.68E-01 21.1 -7323.9622824556
> 11 OT CG 0.68E-01 21.2 0.00000720 -7323.9622826949
> -1.10E-05
> 12 OT LS 0.73E-01 21.1 -7323.9622874241
> 13 OT CG 0.73E-01 21.2 0.00000482 -7323.9622874446
> -4.75E-06
> 14 OT LS 0.82E-01 21.0 -7323.9622898107
> 15 OT CG 0.82E-01 21.2 0.00000382 -7323.9622898422
> -2.40E-06
> 16 OT LS 0.73E-01 21.0 -7323.9622911751
> 17 OT CG 0.73E-01 21.3 0.00000296 -7323.9622911933
> -1.35E-06
> 18 OT LS 0.81E-01 21.0 -7323.9622920761
> 19 OT CG 0.81E-01 21.2 0.00000231 -7323.9622920831
> -8.90E-07
> 20 OT LS 0.93E-01 21.2 -7323.9622926954
>
> Leaving inner SCF loop after reaching 20 steps.
>
> Electronic density on regular grids: -1727.9999999402
> 0.0000000598
> Core density on regular grids: 1727.9999999265
> -0.0000000735
> Total charge density on r-space grids: -0.0000000137
> Total charge density g-space grids: -0.0000000137
>
> Overlap energy of the core charge distribution:
> 0.00000000000265
> Self energy of the core charge distribution:
> -14074.58786311355834
> Core Hamiltonian energy:
> 4408.80717501710569
> Hartree energy:
> 4095.52826292682403
> Exchange-correlation energy:
> -671.83062536674151
> Hartree-Fock Exchange energy:
> -1081.87924215901262
>
> Total energy:
> -7323.96229269538162
>
> outer SCF iter = 1 RMS gradient = 0.23E-05 energy =
> -7323.9622926954
>
> ----------------------------------- OT
> ---------------------------------------
> Allowing for rotations
> Minimizer : CG : conjugate gradient
> Preconditioner : FULL_KINETIC : inversion of T + eS
> Precond_solver : DEFAULT
> Line search : 2PNT : 2 energies, one gradient
> stepsize : 0.15000000 energy_gap :
> 0.00100000
> eps_taylor : 0.10000E-15 max_taylor :
> 4
> ----------------------------------- OT
> ---------------------------------------
>
> Step Update method Time Convergence Total energy
> Change
>
> ------------------------------------------------------------------------------
> 1 OT CG 0.15E+00 43.0 0.00000211 -7323.9622927063
> -6.23E-07
> 2 OT LS 0.47E-01 20.9 -7323.9622916813
> 3 OT CG 0.47E-01 21.2 0.00000134 -7323.9622929669
> -2.61E-07
> 4 OT LS 0.10E+00 21.0 -7323.9622931292
> 5 OT CG 0.10E+00 21.2 0.00000129 -7323.9622931964
> -2.29E-07
> 6 OT LS 0.85E-01 21.0 -7323.9622933660
> 7 OT CG 0.85E-01 21.4 0.00000115 -7323.9622933731
> -1.77E-07
> 8 OT LS 0.87E-01 21.0 -7323.9622935183
> 9 OT CG 0.87E-01 21.2 0.00000099 -7323.9622935185
> -1.45E-07
>
> *** SCF run converged in 9 steps ***
>
> Electronic density on regular grids: -1727.9999999401
> 0.0000000599
> Core density on regular grids: 1727.9999999265
> -0.0000000735
> Total charge density on r-space grids: -0.0000000136
> Total charge density g-space grids: -0.0000000136
>
> Overlap energy of the core charge distribution:
> 0.00000000000265
> Self energy of the core charge distribution:
> -14074.58786311355834
> Core Hamiltonian energy:
> 4408.80711518344106
> Hartree energy:
> 4095.52826732740959
> Exchange-correlation energy:
> -671.83060828648809
> Hartree-Fock Exchange energy:
> -1081.87920462925604
>
> Total energy:
> -7323.96229351845068
>
> outer SCF iter = 2 RMS gradient = 0.99E-06 energy =
> -7323.9622935185
> outer SCF loop converged in 2 iterations or 29 steps
>
> Integrated absolute spin density :
> 2.0000037692
> Ideal and single determinant S**2 : 2.000000
> 2.000000
>
> HFX_MEM_INFO| Number of cart. primitive DERIV's calculated:
> 171964164039744
> HFX_MEM_INFO| Number of sph. DERIV's calculated:
> 39581123230020
> HFX_MEM_INFO| Number of sph. DERIV's stored in-core:
> 0
> HFX_MEM_INFO| Number of sph. DERIV's calculated on the fly:
> 39581123230020
> HFX_MEM_INFO| Total memory consumption DERIV's RAM [MiB]:
> 0
> HFX_MEM_INFO| Whereof max-vals [MiB]:
> 16
> HFX_MEM_INFO| Total compression factor DERIV's RAM:
> 0.00
>
> ENERGY| Total FORCE_EVAL ( QS ) energy (a.u.):
> -7323.962293636419417
>
> -------- Informations at step = 3 ------------
> Optimization Method = BFGS
> Total Energy = -7323.9622936364
> Real energy change = -0.0007083471
> Predicted change in energy = -0.0002188809
> Scaling factor = 0.0000000000
> Step size = 0.0453787275
> Trust radius = 0.4724315332
> Decrease in energy = YES
> Used time = 2379.563
>
> Convergence check :
> Max. step size = 0.0453787275
> Conv. limit for step size = 0.0030000000
> Convergence in step size = NO
> RMS step size = 0.0037943120
> Conv. limit for RMS step = 0.0015000000
> Convergence in RMS step = NO
> Max. gradient = 0.0042154388
> Conv. limit for gradients = 0.0004500000
> Conv. for gradients = NO
> RMS gradient = 0.0002954283
> Conv. limit for RMS grad. = 0.0003000000
> Conv. in RMS gradients = YES
> ---------------------------------------------------
>
> As you see the 'Used time' of each ionic step is much larger than the sum
> of the OT steps.
>
>
> Here is my input:
>
> &GLOBAL
> PROJECT_NAME NaCl
> RUN_TYPE GEO_OPT
> PRINT_LEVEL MEDIUM
> &END GLOBAL
> &FORCE_EVAL
> METHOD QS
> &DFT
> BASIS_SET_FILE_NAME GTH_BASIS_SETS
> POTENTIAL_FILE_NAME GTH_POTENTIALS
> WFN_RESTART_FILE_NAME NaCl-RESTART.wfn
> ROKS
> MULTIP 3
> &QS
> EPS_PGF_ORB 1.0e-12
> &END
> &MGRID
> CUTOFF 1400
> REL_CUTOFF 40
> &END MGRID
> &XC
> &XC_FUNCTIONAL PBE0
> &END XC_FUNCTIONAL
> &HF
> &MEMORY
> MAX_MEMORY 32000
> &END
> &SCREENING
> EPS_SCHWARZ 1.0e-8
> SCREEN_ON_INITIAL_P TRUE
> &END
> &INTERACTION_POTENTIAL
> POTENTIAL_TYPE TRUNCATED
> CUTOFF_RADIUS 6.0
> T_C_G_DATA t_c_g.dat
> &END
> &END
> &END XC
> &SCF
> MAX_SCF 20
> EPS_SCF 1.0e-6
> CHOLESKY INVERSE
> SCF_GUESS RESTART
> &OT
> ROTATION
> PRECONDITIONER FULL_KINETIC
> ENERGY_GAP 0.001
> &END OT
> &OUTER_SCF
> EPS_SCF 1.0e-6
> MAX_SCF 30
> &END OUTER_SCF
> &END SCF
> &END DFT
> &SUBSYS
> &CELL
> ABC [angstrom] 16.92 16.92 16.92
> ALPHA_BETA_GAMMA [deg] 90 90 90
> PERIODIC XYZ
> SYMMETRY CUBIC
> &END CELL
> &TOPOLOGY
> COORD_FILE_FORMAT XYZ
> COORD_FILE_NAME 11.xyz
> &END TOPOLOGY
> &KIND Na
> ELEMENT Na
> BASIS_SET DZVP-GTH
> POTENTIAL GTH-PBE-q9
> &END KIND
> &KIND Cl
> ELEMENT Cl
> BASIS_SET DZVP-GTH
> POTENTIAL GTH-PBE-q7
> &END KIND
> &END SUBSYS
> &END FORCE_EVAL
>
>
>
>
> Best,
> Xiaoming
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20190904/693becd8/attachment.htm>
More information about the CP2K-user
mailing list