[CP2K-user] dimension inconsistency of the overlap and MO coefficients
Vladimir Rybkin
rybk... at gmail.com
Fri Oct 12 12:18:30 UTC 2018
Dear Xiaoming,
thank you for the data. I don't see any inconsistency now. You get 52 with
Cartesian off and 54 with Cartesian on. Turning Cartesian off you can now
multiply your C with your S. Isn't that what you want? Unfortunately, I
can't comment on why orbital #5 is not printed. Perhaps, that is due to the
fact that it is vacant.
Yours,
Vladimir
пятница, 12 октября 2018 г., 13:47:35 UTC+2 пользователь Xiaoming Wang
написал:
>
> Hi Vladimir,
>
> Thanks for you reply.
>
> My input of the print part is:
>
> ------------
>
> &MO
>
> EIGENVALUES
>
> EIGENVECTORS
>
> CARTESIAN
>
> FILENAME mos
>
> MO_INDEX_RANGE 4 5
>
> OCCUPATION_NUMBERS
>
> &EACH
>
> QS_SCF 0
>
> &END EACH
>
> &END MO
>
> --------------
>
>
> With CARTESIAN on, I get
>
>
> ----------------
>
> MO EIGENVALUES, MO OCCUPATION NUMBERS, AND CARTESIAN MO EIGENVECTORS
>
>
> 4 5
>
> -0.260963 -0.034173
>
>
> 2.000000 0.000000
>
>
> 1 1 O 2s 0.000000 0.236782
>
> 2 1 O 3s 0.000000 -0.090781
>
> 3 1 O 4s 0.000000 -0.240258
>
> 4 1 O 3px -0.917807 -0.000000
>
> 5 1 O 3py -0.000000 -0.000000
>
> 6 1 O 3pz 0.000000 -0.238095
>
> 7 1 O 4px 0.020934 -0.000000
>
> 8 1 O 4py 0.000000 -0.000000
>
> 9 1 O 4pz -0.000000 0.013849
>
> 10 1 O 5px -0.003042 0.000000
>
> 11 1 O 5py 0.000000 0.000000
>
> 12 1 O 5pz -0.000000 0.099980
>
> 13 1 O 3dx2 -0.000000 0.000099
>
> 14 1 O 3dxy -0.000000 -0.000000
>
> 15 1 O 3dxz -0.005256 -0.000000
>
> 16 1 O 3dy2 -0.000000 0.000744
>
> 17 1 O 3dyz 0.000000 -0.000000
>
> 18 1 O 3dz2 0.000000 -0.000844
>
> 19 1 O 4dx2 -0.000000 0.000357
>
> 20 1 O 4dxy 0.000000 -0.000000
>
> 21 1 O 4dxz -0.022359 0.000000
>
> 22 1 O 4dy2 0.000000 0.004105
>
> 23 1 O 4dyz -0.000000 0.000000
>
> 24 1 O 4dz2 0.000000 -0.004463
>
> 25 1 O 5s -0.000000 -0.011663
>
> 26 1 O 5px 0.024750 -0.000000
>
> 27 1 O 5py -0.000000 0.000000
>
> 28 1 O 5pz 0.000000 -0.077018
>
>
> 29 2 H 1s 0.000000 -0.116793
>
> 30 2 H 2s 0.000000 -0.003374
>
> 31 2 H 3s -0.000000 0.197029
>
> 32 2 H 2px 0.011575 -0.000000
>
> 33 2 H 2py 0.000000 0.008716
>
> 34 2 H 2pz -0.000000 -0.004748
>
> 35 2 H 3px 0.028901 -0.000000
>
> 36 2 H 3py 0.000000 0.013894
>
> 37 2 H 3pz -0.000000 -0.010138
>
> 38 2 H 4s -0.000000 0.421270
>
> 39 2 H 4px 0.026994 0.000000
>
> 40 2 H 4py 0.000000 0.041403
>
> 41 2 H 4pz -0.000000 -0.044975
>
>
> 42 3 H 1s 0.000000 -0.116793
>
> 43 3 H 2s -0.000000 -0.003374
>
> 44 3 H 3s 0.000000 0.197029
>
> 45 3 H 2px 0.011575 -0.000000
>
> 46 3 H 2py 0.000000 -0.008716
>
> 47 3 H 2pz -0.000000 -0.004748
>
> 48 3 H 3px 0.028901 -0.000000
>
> 49 3 H 3py -0.000000 -0.013894
>
> 50 3 H 3pz -0.000000 -0.010138
>
> 51 3 H 4s 0.000000 0.421270
>
> 52 3 H 4px 0.026994 0.000000
>
> 53 3 H 4py 0.000000 -0.041403
>
> 54 3 H 4pz 0.000000 -0.044975
>
>
>
> Fermi energy: -0.260963
>
>
> HOMO-LUMO gap: 0.226790 = 6.17 eV
> ---------------------------------------
>
> However, with CARTESIAN OFF, I get only the orbital #4:
>
> ----------------------------------------
>
> MO EIGENVALUES, MO OCCUPATION NUMBERS, AND SPHERICAL MO EIGENVECTORS
>
>
> 4
>
> -0.260963
>
>
> 2.000000
>
>
> 1 1 O 2s 0.000000
>
> 2 1 O 3s 0.000000
>
> 3 1 O 4s 0.000000
>
> 4 1 O 3py -0.000000
>
> 5 1 O 3pz 0.000000
>
> 6 1 O 3px -0.917807
>
> 7 1 O 4py 0.000000
>
> 8 1 O 4pz -0.000000
>
> 9 1 O 4px 0.020934
>
> 10 1 O 5py 0.000000
>
> 11 1 O 5pz -0.000000
>
> 12 1 O 5px -0.003042
>
> 13 1 O 3d-2 -0.000000
>
> 14 1 O 3d-1 0.000000
>
> 15 1 O 3d0 0.000000
>
> 16 1 O 3d+1 -0.005256
>
> 17 1 O 3d+2 -0.000000
>
> 18 1 O 4d-2 0.000000
>
> 19 1 O 4d-1 -0.000000
>
> 20 1 O 4d0 0.000000
>
> 21 1 O 4d+1 -0.022359
>
> 22 1 O 4d+2 -0.000000
>
> 23 1 O 5s -0.000000
>
> 24 1 O 5py -0.000000
>
> 25 1 O 5pz 0.000000
>
> 26 1 O 5px 0.024750
>
>
> 27 2 H 1s 0.000000
>
> 28 2 H 2s 0.000000
>
> 29 2 H 3s -0.000000
>
> 30 2 H 2py 0.000000
>
> 31 2 H 2pz -0.000000
>
> 32 2 H 2px 0.011575
>
> 33 2 H 3py 0.000000
>
> 34 2 H 3pz -0.000000
>
> 35 2 H 3px 0.028901
>
> 36 2 H 4s -0.000000
>
> 37 2 H 4py 0.000000
>
> 38 2 H 4pz -0.000000
>
> 39 2 H 4px 0.026994
>
>
> 40 3 H 1s 0.000000
>
> 41 3 H 2s -0.000000
>
> 42 3 H 3s 0.000000
>
> 43 3 H 2py 0.000000
>
> 44 3 H 2pz -0.000000
>
> 45 3 H 2px 0.011575
>
> 46 3 H 3py -0.000000
>
> 47 3 H 3pz -0.000000
>
> 48 3 H 3px 0.028901
>
> 49 3 H 4s 0.000000
>
> 50 3 H 4py 0.000000
>
> 51 3 H 4pz 0.000000
>
> 52 3 H 4px 0.026994
>
>
>
> Fermi energy: -0.260963
>
> -----------------------------
>
>
> Why the MO #5 is not printed in spherical coordinate?
>
>
> Best,
>
> Xiaoming
>
> On Friday, October 12, 2018 at 5:51:08 AM UTC-4, Vladimir Rybkin wrote:
>>
>> Hi Xiaoming,
>>
>> it is. I mean that by default it is not printed, only the basis is. So,
>> please attach your input/output: this will help to stay on equal footing.
>>
>> Yours,
>>
>> Vladimir
>>
>> четверг, 11 октября 2018 г., 16:26:57 UTC+2 пользователь Xiaoming Wang
>> написал:
>>>
>>> Hi Vladimir,
>>>
>>> Are you saying the option of printing MOs with eigenvector on is not
>>> printing the MO coefficients?
>>>
>>> Best,
>>> Xiaoming
>>>
>>> On Thursday, October 11, 2018 at 9:36:49 AM UTC-4, Vladimir Rybkin wrote:
>>>>
>>>> Dear Xiaoming,
>>>>
>>>> by default CP2K does not print MO coefficients. It prints the basis,
>>>> which is Cartesian (e.i. 6 d orbitals instead of 5). So, input/output would
>>>> be helpful.
>>>>
>>>> Yours,
>>>>
>>>> Vladimir
>>>>
>>>> четверг, 11 октября 2018 г., 15:24:16 UTC+2 пользователь Xiaoming Wang
>>>> написал:
>>>>>
>>>>> Hi,
>>>>>
>>>>> I just missed one thing. The MOs could also be printed with spherical
>>>>> coordinates. Then, it should be consistent.
>>>>>
>>>>> Best,
>>>>> Xiaoming
>>>>>
>>>>> On Thursday, October 11, 2018 at 9:21:56 AM UTC-4, Xiaoming Wang wrote:
>>>>>>
>>>>>> Hi Vladimir,
>>>>>>
>>>>>> Thanks for your reply. I'm wondering why the eigenvectors and overlap
>>>>>> are not using the same basis (or with same basis but different coordinates).
>>>>>>
>>>>>> Best,
>>>>>> Xiaoming
>>>>>>
>>>>>> On Thursday, October 11, 2018 at 4:28:32 AM UTC-4, Vladimir Rybkin
>>>>>> wrote:
>>>>>>>
>>>>>>> Dear Xiaoming,
>>>>>>>
>>>>>>> the 6 d orbitals correspond to the six components in the Cartesian
>>>>>>> coordinates, whereas 5 d orbitals are the same expressed is spherical
>>>>>>> coordinates. The coordinate transformation is involved in between.
>>>>>>>
>>>>>>> Yours,
>>>>>>>
>>>>>>> Vladimir
>>>>>>>
>>>>>>> среда, 10 октября 2018 г., 16:16:56 UTC+2 пользователь Xiaoming Wang
>>>>>>> написал:
>>>>>>>>
>>>>>>>> Hello,
>>>>>>>>
>>>>>>>> I'd like to check the equation C^T S C = 1, where C is MO
>>>>>>>> coefficient and S the overlap matrix.
>>>>>>>> However, for my test calculation, C is 54*1 while S is 52*52. I
>>>>>>>> checked the basis details, for the
>>>>>>>> MO coefficient, there are 6 d orbitals (dx2,dxy,dxz,dy2,dyz,dz2),
>>>>>>>> while for the overlap matrix,
>>>>>>>> only 5 d orbitals (d-2,d-1,d0,d+1,d+2) are printed. Why is like
>>>>>>>> that? Am I missing something?
>>>>>>>>
>>>>>>>> Best,
>>>>>>>> Xiaoming
>>>>>>>>
>>>>>>>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20181012/2b91d5a1/attachment.htm>
More information about the CP2K-user
mailing list