Ge bandgap calculations in CP2K using PBE0
anurag vohra
anu... at gmail.com
Mon Jan 29 10:56:00 UTC 2018
Hi Matt,
Thanks for your reply. I tried to run these simulations for 512 Ge atoms
with DFT section below (no errors in output files at-least) but there are
some issues with value of band gap I get:
According to output HOMO value is 0.14948205 a.u. (4.0676 eV), LUMO value
is 0.16622340 a.u. (4.5231 eV) and Fermi energy is 3.882363 eV. Now two
questions over here:
a) How Fermi level is below the HOMO level? It should be either at the same
level as HOMO as known for CP2K or in between the band gap (between HOMO
and LUMO)?
b) Value of band gap is only 0.45 eV, whereas it is expected to
overestimate the band gap ~1.2eV for Hartree-Fock exchange of 0.25. I am
still trying to play with cut-off radius, maybe that will fix issue but is
there anything else which could be wrong?
Both input and outputs are given below.
Regards,
Anurag
*Input:*
&AUXILIARY_DENSITY_MATRIX_METHOD
ADMM_PURIFICATION_METHOD NONE
METHOD BASIS_PROJECTION
&END AUXILIARY_DENSITY_MATRIX_METHOD
&SCF
ADDED_MOS 20
MAX_SCF 200
EPS_SCF 1e-06
SCF_GUESS RESTART
&DIAGONALIZATION T
ALGORITHM STANDARD
&END DIAGONALIZATION
&MIXING T
NBUFFER 4
BETA 1.25
ALPHA 0.2
METHOD BROYDEN_MIXING
&END MIXING
&PRINT
&RESTART ON
&END RESTART
&END PRINT
&SMEAR ON
METHOD FERMI_DIRAC
ELECTRONIC_TEMPERATURE [K] 300
&END SMEAR
&END SCF
&XC
&XC_FUNCTIONAL NO_SHORTCUT
&PBE .TRUE.
SCALE_X 0.75
SCALE_C 1.0
&END PBE
&END XC_FUNCTIONAL
&HF
FRACTION 0.25
&INTERACTION_POTENTIAL
T_C_G_DATA /pseudos/CP2K/t_c_g.dat
POTENTIAL_TYPE TRUNCATED
CUTOFF_RADIUS 5.0
&END INTERACTION_POTENTIAL
&SCREENING
EPS_SCHWARZ 1e-06
EPS_SCHWARZ_FORCES 1e-05
SCREEN_ON_INITIAL_P .TRUE.
&END SCREENING
&MEMORY
EPS_STORAGE_SCALING 0.1
MAX_MEMORY 1280
MAX_DISK_SPACE 2560
&END MEMORY
&END HF
&END XC
&MGRID
CUTOFF 250
NGRIDS 4
REL_CUTOFF 60
&END MGRID
&QS
EPS_PGF_ORB 1e-32
EPS_DEFAULT 1e-10
EXTRAPOLATION ASPC
EXTRAPOLATION_ORDER 3
&END QS
*Output:*
* Eigenvalues of the occupied subspace spin
1 --------------------------------------------- -0.36866786
-0.35966684 -0.35966682 -0.35966667 -0.35965497
-0.35965496 -0.35965493 -0.35085311 -0.35085308
-0.35085293 -0.35084203 -0.35084201 -0.35084199
-0.35084094 -0.35084091 -0.35084087 -0.35082991
-0.35082990 -0.35082981 -0.34233849 -0.34232863
-0.34232862 -0.34232284 -0.34231639 -0.34231470
-0.34231469 -0.34230397 -0.33260802 -0.33260767
-0.33260765 -0.33258344 -0.33258315 -0.33258297
-0.32446838 -0.32446831 -0.32446824 -0.32446817
-0.32446800 -0.32446798 -0.32445754 -0.32445749
-0.32445740 -0.32445732 -0.32445726 -0.32445718
-0.32444422 -0.32444412 -0.32444403 -0.32444393
-0.32444388 -0.32444376 -0.32443333 -0.32443332
-0.32443326 -0.32443311 -0.32443305 -0.32443299
-0.31715259 -0.31715254 -0.31715250 -0.31714386
-0.31714380 -0.31714378 -0.31714111 -0.31714099
-0.31714098 -0.31713109 -0.31713102 -0.31713101
-0.31712563 -0.31712558 -0.31712547 -0.31711948
-0.31711942 -0.31711941 -0.31711436 -0.31711430
-0.31711427 -0.31710701 -0.31710696 -0.31710688
-0.30070423 -0.30070420 -0.30070385 -0.30068189
-0.30068184 -0.30068150 -0.30067793 -0.30067792
-0.30067756 -0.30065361 -0.30065353 -0.30065319
-0.29721108 -0.29721042 -0.29721034 -0.29720261
-0.29720238 -0.29720224 -0.29719891 -0.29719881
-0.29719824 -0.29717683 -0.29717675 -0.29717662
-0.29717344 -0.29717340 -0.29717323 -0.29716280
-0.29716276 -0.29716261 -0.29715518 -0.29715492
-0.29715480 -0.29714478 -0.29714477 -0.29714459
-0.29316480 -0.29314705 -0.29314705 -0.29311726
-0.28754784 -0.28754735 -0.28754722 -0.28749841
-0.28749798 -0.28749794 -0.28116952 -0.28116939
-0.28116934 -0.28116899 -0.28116873 -0.28116871
-0.28115553 -0.28115544 -0.28115542 -0.28115514
-0.28115488 -0.28115488 -0.28112047 -0.28112038
-0.28112038 -0.28112036 -0.28112006 -0.28112002
-0.28110525 -0.28110524 -0.28110517 -0.28110512
-0.28110487 -0.28110483 -0.27781135 -0.27781133
-0.27780881 -0.27780103 -0.27780101 -0.27780040
-0.27780036 -0.27779583 -0.27779323 -0.27778528
-0.27776741 -0.27776740 -0.27775872 -0.27775327
-0.27775319 -0.27774543 -0.27773999 -0.27773992
-0.27773723 -0.27773716 -0.27773412 -0.27772811
-0.27772803 -0.27771704 -0.27394144 -0.27394142
-0.27394098 -0.27394098 -0.27394090 -0.27394089
-0.27392412 -0.27392410 -0.27392365 -0.27392364
-0.27392361 -0.27392354 -0.27389184 -0.27389178
-0.27389138 -0.27389134 -0.27389133 -0.27389122
-0.27387784 -0.27387781 -0.27387740 -0.27387738
-0.27387732 -0.27387732 -0.26421341 -0.26421329
-0.26421278 -0.26421276 -0.26421257 -0.26421252
-0.26419499 -0.26419499 -0.26419437 -0.26419428
-0.26419425 -0.26419402 -0.26416940 -0.26416933
-0.26416876 -0.26416867 -0.26416866 -0.26416838
-0.26415102 -0.26415097 -0.26415047 -0.26415034
-0.26415028 -0.26415023 -0.24317487 -0.24317478
-0.24317443 -0.24314999 -0.24314999 -0.24314978
-0.24313666 -0.24313662 -0.24313641 -0.24311188
-0.24311186 -0.24311167 -0.22521827 -0.22521170
-0.22521145 -0.22518784 -0.22518759 -0.22518116
-0.22330518 -0.22330517 -0.22330481 -0.22330460
-0.22330452 -0.22330419 -0.22329676 -0.22329674
-0.22329663 -0.22329623 -0.22329623 -0.22329619
-0.22328704 -0.22328703 -0.22328663 -0.22328650
-0.22328648 -0.22328611 -0.22326079 -0.22326072
-0.22326045 -0.22326043 -0.22326040 -0.22326023
-0.22127574 -0.22127572 -0.22127485 -0.22127483
-0.22127482 -0.22127481 -0.22125059 -0.22125058
-0.22124974 -0.22124967 -0.22124962 -0.22124959
-0.20211131 -0.20211128 -0.20211120 -0.20211070
-0.20211045 -0.20211036 -0.20209328 -0.20209323
-0.20209305 -0.20209261 -0.20209254 -0.20209251
-0.17749525 -0.17749523 -0.17749487 -0.17749486
-0.17749439 -0.17749435 -0.17749199 -0.17749198
-0.17749157 -0.17749154 -0.17749111 -0.17749105
-0.17747031 -0.17747017 -0.17746979 -0.17746979
-0.17746934 -0.17746933 -0.17746710 -0.17746683
-0.17746654 -0.17746647 -0.17746604 -0.17746595
-0.17663451 -0.17663447 -0.17663406 -0.17663405
-0.17663402 -0.17663402 -0.17661687 -0.17661687
-0.17661643 -0.17661643 -0.17661641 -0.17661635
-0.17659185 -0.17659182 -0.17659138 -0.17659136
-0.17659134 -0.17659131 -0.17658071 -0.17658066
-0.17658026 -0.17658020 -0.17658020 -0.17658018
-0.17498986 -0.17495580 -0.17495580 -0.17494972
-0.16629982 -0.16629090 -0.16629079 -0.16627983
-0.16627976 -0.16627618 -0.16626730 -0.16626584
-0.16626566 -0.16626559 -0.16626344 -0.16626339
-0.16624608 -0.16624605 -0.16623505 -0.16622735
-0.16622666 -0.16622660 -0.16622413 -0.16621929
-0.16621924 -0.16621413 -0.16621405 -0.16620999
-0.15643864 -0.15643861 -0.15643822 -0.15641993
-0.15641990 -0.15641952 -0.15640974 -0.15640971
-0.15640933 -0.15640687 -0.15640682 -0.15640644
-0.15639916 -0.15639905 -0.15639865 -0.15637050
-0.15637036 -0.15637000 -0.15636754 -0.15636742
-0.15636705 -0.15635491 -0.15635489 -0.15635449
-0.15595769 -0.15595767 -0.15595760 -0.15595741
-0.15595700 -0.15595698 -0.15595280 -0.15595279
-0.15595263 -0.15595259 -0.15595223 -0.15595212
-0.15592374 -0.15592371 -0.15592362 -0.15592355
-0.15592308 -0.15592308 -0.15591903 -0.15591899
-0.15591895 -0.15591880 -0.15591842 -0.15591840
-0.14768194 -0.14768166 -0.14768159 -0.14764491
-0.14764461 -0.14764457 -0.13183868 -0.13183866
-0.13183795 -0.13183178 -0.13183175 -0.13183103
-0.13181765 -0.13181762 -0.13181700 -0.13181699
-0.13181688 -0.13181625 -0.11570346 -0.11570339
-0.11570334 -0.11569256 -0.11569252 -0.11569215
-0.11567034 -0.11567029 -0.11567011 -0.11566072
-0.11566058 -0.11566053 -0.11565523 -0.11565521
-0.11565496 -0.11565360 -0.11565331 -0.11565325
-0.11563052 -0.11563046 -0.11563007 -0.11561907
-0.11561901 -0.11561888 -0.08482937 -0.08482932
-0.08482926 -0.08482894 -0.08482888 -0.08482880
-0.08482853 -0.08482849 -0.08482844 -0.08482825
-0.08482824 -0.08482814 -0.08481141 -0.08481136
-0.08481128 -0.08481101 -0.08481097 -0.08481082
-0.08481066 -0.08481060 -0.08481054 -0.08481028
-0.08481026 -0.08481015 -0.05825905 -0.05825889
-0.05825827 -0.05824506 -0.05824503 -0.05824435
-0.05734804 -0.05732222 -0.05730741 -0.05730739
-0.05728647 -0.05727187 -0.05727185 -0.05724086
-0.03661424 -0.03661396 -0.03661392 -0.03660754
-0.03660722 -0.03660722 -0.03660146 -0.03660119
-0.03660113 -0.03659480 -0.03659450 -0.03659446
-0.03480640 -0.03480639 -0.03480637 -0.03480634
-0.03480605 -0.03480602 -0.03480175 -0.03480173
-0.03480171 -0.03480167 -0.03480138 -0.03480135
-0.03478846 -0.03478846 -0.03478836 -0.03478831
-0.03478813 -0.03478801 -0.03478375 -0.03478373
-0.03478369 -0.03478367 -0.03478339 -0.03478335
-0.01877226 -0.01877225 -0.01877188 -0.01877182
-0.01877169 -0.01877167 -0.01876220 -0.01876218
-0.01876182 -0.01876174 -0.01876173 -0.01876167
-0.01735588 -0.01735507 -0.01735502 -0.01734532
-0.01734501 -0.01734451 -0.01734450 -0.01734419
-0.01734410 -0.01733359 -0.01733277 -0.01733274
-0.01255620 -0.01255593 -0.01255524 -0.01255521
-0.01255503 -0.01255492 -0.01253771 -0.01253738
-0.01253674 -0.01253669 -0.01253643 -0.01253642
-0.01181980 -0.01181979 -0.01181896 -0.01181732
-0.01181709 -0.01181709 -0.01181584 -0.01181562
-0.01181559 -0.01181418 -0.01181371 -0.01181371
-0.01181113 -0.01180909 -0.01180908 -0.01180529
-0.01180517 -0.01180350 -0.01178431 -0.01178424
-0.01178412 -0.01178406 -0.01178402 -0.01178392
-0.01166349 -0.01166349 -0.01166217 -0.01165912
-0.01165910 -0.01165828 -0.01164707 -0.01164464
-0.01164463 -0.01163765 -0.01162821 -0.01162820
-0.01162230 -0.01162194 -0.01162192 -0.01161928
-0.01161926 -0.01161616 -0.01161616 -0.01161553
-0.01161230 -0.01160817 -0.01160816 -0.01160532
-0.00454336 -0.00454332 -0.00454325 -0.00454321
-0.00454318 -0.00454315 -0.00453443 -0.00453435
-0.00453433 -0.00453427 -0.00453412 -0.00453409
-0.00453034 -0.00453027 -0.00453020 -0.00453010
-0.00453004 -0.00452993 -0.00452413 -0.00452411
-0.00452400 -0.00452394 -0.00452378 -0.00452375
-0.00291831 -0.00291823 -0.00291810 -0.00291802
-0.00291789 -0.00291783 -0.00291216 -0.00291208
-0.00291194 -0.00291185 -0.00291162 -0.00291160
-0.00289831 -0.00289830 -0.00289827 -0.00289813
-0.00289801 -0.00289800 -0.00289214 -0.00289200
-0.00289195 -0.00289194 -0.00289176 -0.00289169
0.01280386 0.01280412 0.01280890 0.01281589
0.01282071 0.01282093 0.02163444 0.02163445
0.02163455 0.02163461 0.02163467 0.02163475
0.02164362 0.02164365 0.02164376 0.02164383
0.02164389 0.02164390 0.02165441 0.02165444
0.02165453 0.02165458 0.02165459 0.02165463
0.02167353 0.02167358 0.02167369 0.02167371
0.02167376 0.02167383 0.02373159 0.02373188
0.02373194 0.02375194 0.02375197 0.02375209
0.02375699 0.02375701 0.02375701 0.02376154
0.02376159 0.02376165 0.02400176 0.02400181
0.02400218 0.02400227 0.02400283 0.02400283
0.02400493 0.02400500 0.02400537 0.02400549
0.02400599 0.02400604 0.02400963 0.02400967
0.02401008 0.02401014 0.02401069 0.02401074
0.02401285 0.02401286 0.02401329 0.02401337
0.02401388 0.02401395 0.02619875 0.02619904
0.02619911 0.02621151 0.02621166 0.02621171
0.02621608 0.02621614 0.02621627 0.02621697
0.02621715 0.02621721 0.02623235 0.02623251
0.02623259 0.02624612 0.02624622 0.02624624
0.02625440 0.02625455 0.02625456 0.02625564
0.02625579 0.02625582 0.02877127 0.02877129
0.02877158 0.02877162 0.02877174 0.02877183
0.02877701 0.02877702 0.02877736 0.02877750
0.02877754 0.02877775 0.02879189 0.02879189
0.02879215 0.02879220 0.02879237 0.02879238
0.02879750 0.02879763 0.02879792 0.02879797
0.02879805 0.02879827 0.03090717 0.03090744
0.03090750 0.03091791 0.03091821 0.03091827
0.03092653 0.03092683 0.03092688 0.03093711
0.03093738 0.03093743 0.03934270 0.03934283
0.03934561 0.03934762 0.03934763 0.03935049
0.04030546 0.04030897 0.04030898 0.04031880
0.04031883 0.04032055 0.04032617 0.04032641
0.04032643 0.04033646 0.04034462 0.04034464
0.04035808 0.04035808 0.04036105 0.04036348
0.04036349 0.04036433 0.04037008 0.04037011
0.04037194 0.04037349 0.04037351 0.04037791
0.04491163 0.04491165 0.04491167 0.04491179
0.04491185 0.04491192 0.04493052 0.04493052
0.04493055 0.04493064 0.04493065 0.04493077
0.04495550 0.04495553 0.04495556 0.04495560
0.04495566 0.04495568 0.04495946 0.04495946
0.04495952 0.04495953 0.04495959 0.04495961
0.05087297 0.05087301 0.05087351 0.05087715
0.05087722 0.05087770 0.05090249 0.05090253
0.05090305 0.05090453 0.05090459 0.05090509
0.05090569 0.05090573 0.05090622 0.05091266
0.05091266 0.05091318 0.05092247 0.05092250
0.05092298 0.05092952 0.05092953 0.05093003
0.05548238 0.05548245 0.05548358 0.05548486
0.05548486 0.05548603 0.05550192 0.05550192
0.05550307 0.05552016 0.05552017 0.05552135
0.06660565 0.06660569 0.06660627 0.06661582
0.06661586 0.06661642 0.06661723 0.06661724
0.06661781 0.06662694 0.06662703 0.06662721
0.06662728 0.06662758 0.06662783 0.06663142
0.06663146 0.06663202 0.06665428 0.06665439
0.06665494 0.06665866 0.06665869 0.06665927
0.06951145 0.06951213 0.06951214 0.06951441
0.06951505 0.06951507 0.06951707 0.06951774
0.06951781 0.06952002 0.06952072 0.06952072
0.07267135 0.07267135 0.07267139 0.07267147
0.07267233 0.07267242 0.07267272 0.07267282
0.07267285 0.07267287 0.07267380 0.07267382
0.07268866 0.07268870 0.07268873 0.07268882
0.07268971 0.07268976 0.07269013 0.07269016
0.07269020 0.07269038 0.07269122 0.07269122
0.07631967 0.07631968 0.07631989 0.07633033
0.07633056 0.07633074 0.07633525 0.07633539
0.07633576 0.07636611 0.07636613 0.07636634
0.07798295 0.07798295 0.07798466 0.07798478
0.07798512 0.07798512 0.07798701 0.07798702
0.07798707 0.07804128 0.07804140 0.07804142
0.07804497 0.07804515 0.07804516 0.07805112
0.07805112 0.07805123 0.07805172 0.07805178
0.07805178 0.07805902 0.07805913 0.07805915
0.07976981 0.07977017 0.07977356 0.07977444
0.07977458 0.07979862 0.07981609 0.07981635
0.10104438 0.10106170 0.10106212 0.10107082
0.10107103 0.10109063 0.10109103 0.10109855
0.10112217 0.10112255 0.10113945 0.10113955
0.10114391 0.10114443 0.10115709 0.10115740
0.10230496 0.10230496 0.10230533 0.10232539
0.10232545 0.10232586 0.10237031 0.10237041
0.10237074 0.10238239 0.10238247 0.10238282
0.12000840 0.12000854 0.12000860 0.12000973
0.12000983 0.12000986 0.12003129 0.12003143
0.12003144 0.12003249 0.12003259 0.12003259
0.13479703 0.13483338 0.13483570 0.14948205 Fermi Energy
[eV] : 3.882363 Lowest eigenvalues of the unoccupied subspace spin
1 --------------------------------------------- 0.16622340
0.16622506 0.16622514*
On Thursday, 25 January 2018 16:40:09 UTC+1, Matt W wrote:
>
> It should work. But you should carefully check that changing from
> purification to no purification does not much effect your results (total
> energies will change, but energy difference etc should be only very
> slightly effected).
>
> Matt
>
> On Thursday, January 25, 2018 at 3:28:30 PM UTC, anurag vohra wrote:
>>
>> Hi,
>>
>> Is there any reference available where bandgap of Ge is calculated using
>> PBE0 functional in CP2K?
>>
>> I am aware of this link:
>>
>> https://www.cp2k.org/_media/events:2015_user_meeting:cp2k-uk-2015-ling.pdf
>>
>> However, this code doesn't allows to use OT together with added MOS. Also
>> Purification method (*MO_DIAG*) in ADMM only works together with OT.
>>
>> *&AUXILIARY_DENSITY_MATRIX_METHOD*
>> *METHOD BASIS_PROJECTION*
>> *ADMM_PURIFICATION_METHOD MO_DIAG*
>> *&END AUXILIARY_DENSITY_MATRIX_METHOD*
>>
>> Is it ok to run these simulations without any purification method & OT? I
>> am adding extra MOS over here. Standard diagonalization, broyden mixing and
>> smearing is used for single point energy calculation.
>>
>> Regards,
>> Anurag
>>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.cp2k.org/archives/cp2k-user/attachments/20180129/204de767/attachment.htm>
More information about the CP2K-user
mailing list